Effects of chronic in vivo administration of nitroglycerine on ACh-induced endothelium-dependent relaxation in rabbit cerebral arteries.
Ontology highlight
ABSTRACT: BACKGROUND AND PURPOSE: In the setting of nitrate tolerance, endothelium-dependent relaxation is reduced in several types of peripheral vessels. However, it is unknown whether chronic in vivo administration of nitroglycerine modulates such relaxation in cerebral arteries. EXPERIMENTAL APPROACH: Isometric force and smooth muscle cell membrane potential were measured in endothelium-intact strips from rabbit middle cerebral artery (MCA) and posterior cerebral artery (PCA). KEY RESULTS: ACh (0.1-10 microM) concentration-dependently induced endothelium-dependent relaxation during the contraction induced by histamine in both MCA and PCA. Chronic (10 days) in vivo administration of nitroglycerine reduced the ACh-induced relaxation in PCA but not in MCA, in the presence of the cyclooxygenase inhibitor diclofenac (3 microM). In the presence of the NO-synthase inhibitor N (omega)-nitro-L-arginine (L-NNA, 0.1 mM) plus diclofenac, in MCA from both nitroglycerine-untreated control and -treated rabbits, ACh (0.1-10 microM) induced a smooth muscle cell hyperpolarization and relaxation, and these were blocked by the small-conductance Ca(2+)-activated K(+)-channel inhibitor apamin (0.1 microM), but not by the large- and intermediate-conductance Ca(2+)-activated K(+)-channel inhibitor charybdotoxin (0.1 microM). In contrast, in PCA, ACh (<3 microM) induced neither hyperpolarization nor relaxation under these conditions, suggesting that the endothelium-derived relaxing factor is NO in PCA, whereas endothelium-derived hyperpolarizing factor (EDHF) plays a significant role in MCA. CONCLUSIONS AND IMPLICATIONS: It is suggested that in rabbit cerebral arteries, the function of the endothelium-derived relaxing factor NO and that of EDHF may be modulated differently by chronic in vivo administration of nitroglycerine.
SUBMITTER: Watanabe Y
PROVIDER: S-EPMC2199382 | biostudies-other | 2008 Jan
REPOSITORIES: biostudies-other
ACCESS DATA