Epigenetic inactivation of SLIT3 and SLIT1 genes in human cancers.
Ontology highlight
ABSTRACT: In Drosophila, the Slit gene product, a secreted glycoprotein, acts as a midline repellent to guide axonal development during embryogenesis. Three human Slit gene orthologues have been characterised and recently we reported frequent promoter region hypermethylation and transcriptional silencing of SLIT2 in lung, breast, colorectal and glioma cell lines and primary tumours. Furthermore, re-expression of SLIT2 inhibited the growth of cancer cell lines so that SLIT2 appears to function as a novel tumour suppressor gene (TSG). We analysed the expression of SLIT3 (5q35-34) and SLIT1 (1q23.3-q24) genes in 20 normal human tissues. Similar to SLIT2 expression profile, SLIT3 is expressed strongly in many tissues, while SLIT1 expression is neuronal specific. We analysed the 5' CpG island of SLIT3 and SLIT1 genes in tumour cell lines and primary tumours for hypermethylation. SLIT3 was found to be methylated in 12 out of 29 (41%) of breast, one out of 15 (6.7%) lung, two out of six (33%) colorectal and in two out of (29%) glioma tumour cell lines. In tumour cell lines, silenced SLIT3 associated with hypermethylation and was re-expressed after treatment with 5-aza-2'-deoxycytidine. In primary tumours, SLIT3 was methylated in 16% of primary breast tumours, 35% of gliomas and 38% of colorectal tumours. Direct sequencing of bisulphite-modified DNA from methylated tumour cell lines and primary tumours demonstrated that majority of the CpG sites analysed were heavily methylated. Thus, both SLIT2 and SLIT3 are frequently methylated in gliomas and colorectal cancers, but the frequency of SLIT3 methylation in lung and breast cancer is significantly less than that for SLIT2. We also demonstrated SLIT1 promoter region hypermethylation in glioma tumour lines (five out of six; 83%), the methylation frequency in glioma tumours was much lower (two out of 20; 10%). Hence, evidence is accumulating for the involvement of members of the guidance cues molecules and their receptors in tumour development.
SUBMITTER: Dickinson RE
PROVIDER: S-EPMC2409788 | biostudies-other | 2004 Dec
REPOSITORIES: biostudies-other
ACCESS DATA