Crocetin improves the insulin resistance induced by high-fat diet in rats.
Ontology highlight
ABSTRACT: BACKGROUND AND PURPOSE: The amelioration of insulin resistance by treatment with crocetin is closely related to the hypolipidaemic effect. The present study is designed to clarify the insulin-sensitizing mechanism of crocetin by elucidating the mechanism of regulation of lipid metabolism by crocetin. EXPERIMENTAL APPROACH: Rats given a high-fat diet were treated with crocetin for 6 weeks before hyperinsulinaemic-euglycaemic clamp. 14C-palmitate was used as tracer to track the fate of non-esterified fatty acids or as substrate to measure beta-oxidation rate. Triglyceride clearance in plasma and lipoprotein lipase activity in tissues were tested. Content of lipids in plasma and tissues was determined. Real-time PCR was used to assay the level of mRNA from genes involved in non-esterified fatty acid and triglyceride uptake and oxidation. KEY RESULTS: Crocetin prevented high-fat-diet induced insulin resistance (increased clamp glucose infusion rate), raised hepatic non-esterified fatty acid uptake and oxidation, accelerated triglyceride clearance in plasma, enhanced lipoprotein lipase activity in liver, and reduced the accumulation of detrimental lipids (DAG and long-chain acyl CoA) in liver and muscle. Genes involved in hepatic lipid metabolism which are regulated by peroxisome proliferator-activated receptor-alpha, were modulated to accelerate lipid uptake and oxidation. CONCLUSIONS AND IMPLICATIONS: Through regulating genes involved in lipid metabolism, crocetin accelerated hepatic uptake and oxidation of non-esterified fatty acid and triglyceride, and reduced lipid availability to muscle, thus decreasing lipid accumulation in muscle and liver, and consequently improving sensitivity to insulin.
SUBMITTER: Sheng L
PROVIDER: S-EPMC2451043 | biostudies-other | 2008 Jul
REPOSITORIES: biostudies-other
ACCESS DATA