Unknown

Dataset Information

0

Side chain oxygenated cholesterol regulates cellular cholesterol homeostasis through direct sterol-membrane interactions.


ABSTRACT: Side chain oxysterols exert cholesterol homeostatic effects by suppression of sterol regulatory element-binding protein maturation and promoting degradation of hydroxymethylglutaryl-CoA reductase. To examine whether oxysterol-membrane interactions contribute to the regulation of cellular cholesterol homeostasis, we synthesized the enantiomer of 25-hydroxycholesterol. Using this unique oxysterol probe, we provide evidence that oxysterol regulation of cholesterol homeostatic responses is not mediated by enantiospecific oxysterol-protein interactions. We show that side chain oxysterols, but not steroid ring-modified oxysterols, exhibit membrane expansion behavior in phospholipid monolayers and bilayers in vitro. This behavior is non-enantiospecific and is abrogated by increasing the saturation of phospholipid acyl chain constituents. Moreover, we extend these findings into cultured cells by showing that exposure to saturated fatty acids at concentrations that lead to endoplasmic reticulum membrane phospholipid remodeling inhibits oxysterol activity. These studies implicate oxysterol-membrane interactions in acute regulation of sterol homeostatic responses and provide new insights into the mechanism through which oxysterols regulate cellular cholesterol balance.

SUBMITTER: Gale SE 

PROVIDER: S-EPMC2615513 | biostudies-other | 2009 Jan

REPOSITORIES: biostudies-other

altmetric image

Publications

Side chain oxygenated cholesterol regulates cellular cholesterol homeostasis through direct sterol-membrane interactions.

Gale Sarah E SE   Westover Emily J EJ   Dudley Nicole N   Krishnan Kathiresan K   Merlin Sean S   Scherrer David E DE   Han Xianlin X   Zhai Xiuhong X   Brockman Howard L HL   Brown Rhoderick E RE   Covey Douglas F DF   Schaffer Jean E JE   Schlesinger Paul P   Ory Daniel S DS  

The Journal of biological chemistry 20081106 3


Side chain oxysterols exert cholesterol homeostatic effects by suppression of sterol regulatory element-binding protein maturation and promoting degradation of hydroxymethylglutaryl-CoA reductase. To examine whether oxysterol-membrane interactions contribute to the regulation of cellular cholesterol homeostasis, we synthesized the enantiomer of 25-hydroxycholesterol. Using this unique oxysterol probe, we provide evidence that oxysterol regulation of cholesterol homeostatic responses is not media  ...[more]

Similar Datasets

| S-EPMC8361143 | biostudies-literature
2023-06-07 | GSE224014 | GEO
| S-EPMC6391956 | biostudies-literature
| S-EPMC6622159 | biostudies-literature
| S-EPMC1202387 | biostudies-literature
| S-EPMC4020583 | biostudies-literature
| S-EPMC2203320 | biostudies-literature
| S-EPMC2249850 | biostudies-literature
| S-EPMC5736503 | biostudies-literature
| S-EPMC5005188 | biostudies-literature