The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon.
Ontology highlight
ABSTRACT: The transcription factor p53 protects neurons from transformation and DNA damage through the induction of cell-cycle arrest, DNA repair and apoptosis in a range of in vitro and in vivo conditions. Indeed, p53 has a crucial role in eliciting neuronal cell death during development and in adult organisms after exposure to a range of stressors and/or DNA damage. Nevertheless, accumulating evidence challenges this one-sided view of the role of p53 in the nervous system. Here, we discuss how-unexpectedly-p53 can regulate the proliferation and differentiation of neural progenitor cells independently of its role in apoptosis, and p53 post-translational modifications might promote neuronal maturation, as well as axon outgrowth and regeneration, following neuronal injury. We hope to encourage a more comprehensive view of the non-apoptotic functions of p53 during neural development, and to warn against oversimplifications regarding its role in neurons. In addition, we discuss how further insight into the p53-dependent modulation of these mechanisms is necessary to elucidate the decision-making processes between neuronal cell death and differentiation during development, and between neuronal degeneration and axonal regeneration after injury.
SUBMITTER: Tedeschi A
PROVIDER: S-EPMC2711843 | biostudies-other | 2009 Jun
REPOSITORIES: biostudies-other
ACCESS DATA