Unknown

Dataset Information

0

Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier.


ABSTRACT: Angiogenesis precedes recovery following spinal cord injury and its extent correlates with neural regeneration, suggesting that angiogenesis may play a role in repair. An important precondition for studying the role of angiogenesis is the ability to induce it in a controlled manner. Previously, we showed that a coculture of endothelial cells (ECs) and neural progenitor cells (NPCs) promoted the formation of stable tubes in vitro and stable, functional vascular networks in vivo in a subcutaneous model. We sought to test whether a similar coculture would lead to the formation of stable functional vessels in the spinal cord following injury. We created microvascular networks in a biodegradable two-component implant system and tested the ability of the coculture or controls (lesion control, implant alone, implant + ECs or implant + NPCs) to promote angiogenesis in a rat hemisection model of spinal cord injury. The coculture implant led to a fourfold increase in functional vessels compared with the lesion control, implant alone or implant + NPCs groups and a twofold increase in functional vessels over the implant + ECs group. Furthermore, half of the vessels in the coculture implant exhibited positive staining for the endothelial barrier antigen, a marker for the formation of the blood-spinal cord barrier. No other groups have shown positive staining for the blood-spinal cord barrier in the injury epicenter. This work provides a novel method to induce angiogenesis following spinal cord injury and a foundation for studying its role in repair.

SUBMITTER: Rauch MF 

PROVIDER: S-EPMC2764251 | biostudies-other | 2009 Jan

REPOSITORIES: biostudies-other

altmetric image

Publications

Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier.

Rauch Millicent Ford MF   Hynes Sara Royce SR   Bertram James J   Redmond Andy A   Robinson Rebecca R   Williams Cicely C   Xu Hao H   Madri Joseph A JA   Lavik Erin B EB  

The European journal of neuroscience 20090101 1


Angiogenesis precedes recovery following spinal cord injury and its extent correlates with neural regeneration, suggesting that angiogenesis may play a role in repair. An important precondition for studying the role of angiogenesis is the ability to induce it in a controlled manner. Previously, we showed that a coculture of endothelial cells (ECs) and neural progenitor cells (NPCs) promoted the formation of stable tubes in vitro and stable, functional vascular networks in vivo in a subcutaneous  ...[more]

Similar Datasets

| S-EPMC4293145 | biostudies-literature
| S-EPMC10937794 | biostudies-literature
| S-EPMC7722327 | biostudies-literature
| S-EPMC9900454 | biostudies-literature
| S-EPMC3177105 | biostudies-literature
| S-EPMC6238608 | biostudies-literature
| S-EPMC7287126 | biostudies-literature
| S-EPMC8419688 | biostudies-literature
| S-EPMC5343469 | biostudies-literature
| S-EPMC8552841 | biostudies-literature