One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex.
Ontology highlight
ABSTRACT: Though opening of the start site (+1) region of promoter DNA is required for transcription by RNA polymerase (RNAP), surprisingly little is known about how and when this occurs in the mechanism. Early events at the lambdaP(R) promoter load this region of duplex DNA into the active site cleft of Escherichia coli RNAP, forming the closed, permanganate-unreactive intermediate I(1). Conversion to the subsequent intermediate I(2) overcomes a large enthalpic barrier. Is I(2) open? Here we create a burst of I(2) by rapidly destabilizing open complexes (RP(o)) with 1.1 M NaCl. Fast footprinting reveals that thymines at positions from -11 to +2 in I(2) are permanganate-reactive, demonstrating that RNAP opens the entire initiation bubble in the cleft in a single step. Rates of decay of all observed thymine reactivities are the same as the I(2) to I(1) conversion rate determined by filter binding. In I(2), permanganate reactivity of the +1 thymine on the template (t) strand is the same as the RP(o) control, whereas nontemplate (nt) thymines are significantly less reactive than in RP(o). We propose that: (i) the +1(t) thymine is in the active site in I(2); (ii) conversion of I(2) to RP(o) repositions the nt strand in the cleft; and (iii) movements of the nt strand are coupled to the assembly and DNA binding of the downstream clamp and jaw that occurs after DNA opening and stabilizes RP(o). We hypothesize that unstable open intermediates at the lambdaP(R) promoter resemble the unstable, transcriptionally competent open complexes formed at ribosomal promoters.
SUBMITTER: Gries TJ
PROVIDER: S-EPMC2890804 | biostudies-other | 2010 Jun
REPOSITORIES: biostudies-other
ACCESS DATA