Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling.
Ontology highlight
ABSTRACT: The development of classically activated monocytic cells (M1) is a prerequisite for effective elimination of parasites, including African trypanosomes. However, persistent activation of M1 that produce pathogenic molecules such as TNF and NO contributes to the development of trypanosome infection-associated tissue injury including liver cell necrosis in experimental mouse models. Aiming to identify mechanisms involved in regulation of M1 activity, we have recently documented that during Trypanosoma brucei infection, CD11b(+)Ly6C(+)CD11c(+) TNF and iNOS producing DCs (Tip-DCs) represent the major pathogenic M1 liver subpopulation. By using gene expression analyses, KO mice and cytokine neutralizing antibodies, we show here that the conversion of CD11b(+)Ly6C(+) monocytic cells to pathogenic Tip-DCs in the liver of T. brucei infected mice consists of a three-step process including (i) a CCR2-dependent but CCR5- and Mif-independent step crucial for emigration of CD11b(+)Ly6C(+) monocytic cells from the bone marrow but dispensable for their blood to liver migration; (ii) a differentiation step of liver CD11b(+)Ly6C(+) monocytic cells to immature inflammatory DCs (CD11c(+) but CD80/CD86/MHC-II(low)) which is IFN-gamma and MyD88 signaling independent; and (iii) a maturation step of inflammatory DCs to functional (CD80/CD86/MHC-II(high)) TNF and NO producing Tip-DCs which is IFN-gamma and MyD88 signaling dependent. Moreover, IL-10 could limit CCR2-mediated egression of CD11b(+)Ly6C(+) monocytic cells from the bone marrow by limiting Ccl2 expression by liver monocytic cells, as well as their differentiation and maturation to Tip-DCs in the liver, showing that IL-10 works at multiple levels to dampen Tip-DC mediated pathogenicity during T. brucei infection. A wide spectrum of liver diseases associates with alteration of monocyte recruitment, phenotype or function, which could be modulated by IL-10. Therefore, investigating the contribution of recruited monocytes to African trypanosome induced liver injury could potentially identify new targets to treat hepatic inflammation in general, and during parasite infection in particular.
Project description:Background: Age-related macular degeneration (AMD) is the most common cause of progressive and irreversible blindness in developed countries. Although the pathogenesis is not fully understood, AMD is a multifactorial pathology with an accumulation of inflammatory components and macrophages and a strong genetic predisposition. Our purpose was to investigate the association between early AMD and CCL2 (rs1024611, rs4586, rs2857656) and CCR2 (rs1799865) single nucleotide polymorphisms (SNPs) and CCL2, CCR2 serum levels in a Lithuanian population. Methods: The study included 310 patients with early AMD and 384 healthy subjects. Genotyping of CCL2 rs1024611, rs4586, rs2857656, and CCR2 rs1799865 was performed using a real-time polymerase chain reaction method, while CCL2 and CCR2 chemokines serum concentrations were analyzed using an enzyme-linked immunosorbent assay. Results: We found that the G allele at CCL2 rs1024611 was more prevalent in the early AMD group than in controls (29.2% vs. 24.1%, p = 0.032). Similarly, the C allele in CCL2 rs2857656 is more common in the early AMD group than in controls (29.2% vs. 24.2%, p = 0.037). Binomial logistic regression revealed that each G allele in rs1024611 was associated with 1.3-fold increased odds of developing early AMD under the additive model (OR = 1.322; 95% CI: 1.032–1.697, p = 0.027) as was each C allele in rs2857656 under the additive model (OR = 1.314; 95% CI: 1.025–1.684, p = 0.031). Haplotype analysis revealed that the C-A-G haplotype of CCL2 SNPs was associated with 35% decreased odds of early AMD development. Further analysis showed elevated CCL2 serum levels in the group with early AMD compared to controls (median (IQR): 1181.6 (522.6) pg/mL vs. 879.9 (494.4) pg/mL, p = 0.013); however, there were no differences between CCR2 serum levels within groups. Conclusions: We found the associations between minor alleles at CCL2 rs1024611 and rs2857656, elevated CCL2 serum levels, and early AMD development.
Project description:Natural killer (NK) cells can produce IFNγ or IL-10 to regulate inflammation and immune responses but the factors driving NK cell IL-10 secretion are poorly-defined. Here, we identified NK cell-intrinsic STAT3 activation as vital for IL-10 production during both systemic Listeria monocytogenes (Lm) infection and following IL-15 cytokine/receptor complex (IL15C) treatment for experimental cerebral malaria (ECM). In both contexts, conditional Stat3 deficiency in NK cells abrogated production of IL-10. Initial NK cell STAT3 phosphorylation was driven by IL-15. During Lm infection, this required capture or presentation of IL-15 by NK cell IL-15Rα. Persistent STAT3 activation was required to drive measurable IL-10 secretion and required NK cell expression of IL-10Rα. Survival-promoting effects of IL-15C treatment in ECM were dependent on NK cell Stat3 while NK cell-intrinsic deficiency for Stat3, Il15ra, or Il10ra abrogated NK cell IL-10 production and increased resistance against Lm. NK cell Stat3 deficiency did not impact production of IFNγ, indicating the STAT3 activation initiated by IL-15 and amplified by IL-10 selectively drives the production of anti-inflammatory IL-10 by responding NK cells.
Project description:Tolerogenic dendritic cells (DCs) are key players in maintaining immunological homeostasis, dampening immune responses, and promoting tolerance. DC-10, a tolerogenic population of human IL-10-producing DCs characterized by the expression of HLA-G and ILT4, play a pivotal role in promoting tolerance via T regulatory type 1 (Tr1) cells. Thus far, the absence of markers that uniquely identify DC-10 has limited in vivo studies. By in vitro gene expression profiling of differentiated human DCs, we identified CD141 and CD163 as surface markers for DC-10. The coexpression of CD141 and CD163 in combination with CD14 and CD16 enables the ex vivo isolation of DC-10 from the peripheral blood. CD14+CD16+CD141+CD163+ cells isolated from the peripheral blood of healthy subjects (ex vivo DC-10) produced spontaneously and upon activation of IL-10 and limited levels of IL-12. Moreover, in vitro stimulation of allogeneic naive CD4+ T cells with ex vivo DC-10 induced the differentiation of alloantigen-specific CD49b+LAG-3+ Tr1 cells. Finally, ex vivo DC-10 and in vitro generated DC-10 exhibited a similar transcriptional profile, which are characterized by an anti-inflammatory and pro-tolerogenic signature. These results provide new insights into the phenotype and molecular signature of DC-10 and highlight the tolerogenic properties of circulating DC-10. These findings open the opportunity to track DC-10 in vivo and to define their role in physiological and pathological settings.
Project description:Polymicrobial sepsis induces organ failure and is accompanied by overwhelming inflammatory response and impairment of microbial killing. Peroxisome proliferator-activated receptor (PPAR)-? is a nuclear receptor with pleiotropic effects on lipid metabolism, inflammation, and cell proliferation. The insulin-sensitizing drugs thiazolidinediones (TZDs) are specific PPAR-? agonists. TZDs exert anti-inflammatory actions in different disease models, including polymicrobial sepsis. The TZD pioglitazone, which has been approved by the U.S. Food and Drug Administration, improves sepsis outcome; however, the molecular programs that mediate its effect have not been determined. In a murine model of sepsis, we now show that pioglitazone treatment improves microbial clearance and enhances neutrophil recruitment to the site of infection. We also observed reduced proinflammatory cytokine production and high IL-10 levels in pioglitazone-treated mice. These effects were associated with a decrease in STAT-1-dependent expression of MyD88 in vivo and in vitro. IL-10R blockage abolished PPAR-?-mediated inhibition of MyD88 expression. These data demonstrate that the primary mechanism by which pioglitazone protects against polymicrobial sepsis is through the impairment of MyD88 responses. This appears to represent a novel regulatory program. In this regard, pioglitazone provides advantages as a therapeutic tool, because it improves different aspects of host defense during sepsis, ultimately enhancing survival.
Project description:IL-10 produced by dendritic cells (DC) can limit or terminate ongoing inflammatory responses by inhibiting the proinflammatory cytokine production. Currently, the molecular mechanism by which IL-10 suppresses cytokine production is still ill-defined. In this study, we showed that IL-10 produced by DC dampens myeloid differentiation factor (MyD)88-dependent, but not MyD88-independent signaling. At the molecular level, IL-10 induces ubiquitination and subsequent protein degradation of MyD88-dependent signaling molecules, including IL-1 receptor-associated kinase 4 and TNF-receptor associated factor 6. Protein degradation by IL-10 was associated with decreased phosphorylation of p38, JNK, and IKK. All of these events were prevented by either blocking IL-10 receptor signaling or inhibiting proteasome degradation. IL-10 induced LPS hyporesponsiveness using the same mechanisms, i.e., ubiquitination and protein degradation. Thus, a previously undescribed regulatory mechanism by which IL-10-mediated protein degradation contributes to the inhibition of inflammatory cytokine production and endotoxin tolerance in DC.
Project description:BACKGROUND: Leukocyte migration is essential for effective host defense against invading pathogens and during immune homeostasis. A hallmark of the regulation of this process is the presentation of chemokines in gradients stimulating leukocyte chemotaxis via cognate chemokine receptors. For efficient migration, receptor responsiveness must be maintained whilst the cells crawl on cell surfaces or on matrices along the attracting gradient towards increasing concentrations of agonist. On the other hand agonist-induced desensitization and internalization is a general paradigm for chemokine receptors which is inconsistent with the prolonged migratory capacity. METHODOLOGY/PRINCIPAL FINDINGS: Chemotaxis of monocytes was monitored in response to fluorescent CCL2-mCherry by time-lapse video microscopy. Uptake of the fluorescent agonist was used as indirect measure to follow the endogenous receptor CCR2 expressed on primary human monocytes. During chemotaxis CCL2-mCherry becomes endocytosed as cargo of CCR2, however, the internalization of CCR2 is not accompanied by reduced responsiveness of the cells due to desensitization. CONCLUSIONS/SIGNIFICANCE: During chemotaxis CCR2 expressed on monocytes internalizes with the bound chemoattractant, but cycles rapidly back to the plasma membrane to maintain high responsiveness. Moreover, following relocation of the source of attractant, monocytes can rapidly reverse their polarization axis organizing a new leading edge along the newly formed gradient, suggesting a uniform distribution of highly receptive CCR2 on the plasma membrane. The present observations further indicate that during chemotaxis CCR2 acts as scavenger consuming the chemokine forming the attracting cue.
Project description:UnlabelledPerineural invasion is a form of cancer progression where cancer cells invade along nerves. This behavior is associated with poor clinical outcomes; therefore, it is critical to identify novel ligand-receptor interactions between nerves and cancer cells that support the process of perineural invasion. A proteomic profiler chemokine array was used to screen for nerve-derived factors secreted from tissue explants of dorsal root ganglion (DRG), and CCL2 was identified as a lead candidate. Prostate cancer cell line expression of CCR2, the receptor to CCL2, correlated closely with MAPK and Akt pathway activity and cell migration towards CCL2 and DRG. In vitro nerve and cancer coculture invasion assays of perineural invasion demonstrated that cancer cell CCR2 expression facilitates perineural invasion. Perineural invasion is significantly diminished in coculture assays when using DRG harvested from CCL2(-/-) knockout mice as compared with control CCL2(+/+) mice, indicating that CCR2 is required for perineural invasion in this murine model of perineural invasion. Furthermore, 20 of 21 (95%) patient specimens of prostate adenocarcinoma with perineural invasion exhibited CCR2 expression by immunohistochemistry, while just 3 of 13 (23%) lacking perineural invasion expressed CCR2. In summary, nerve-released CCL2 supports prostate cancer migration and perineural invasion though CCR2-mediated signaling.ImplicationsThese results reveal CCL2-CCR2 signaling as a key ligand-receptor mechanism that mediates cancer cell communication with nerves during perineural invasion and highlight a potential future therapeutic target.
Project description:Chemokines are a small family of cytokines that were first discovered as chemotactic factors in leukocytes during inflammation, and reports on the relationship between chemokines and cancer progression have recently been increasing. The CCL2-CCR2 axis is one of the major chemokine signaling pathways, and has various functions in tumor progression, such as increasing tumor cell proliferation and invasiveness, and creating a tumor microenvironment through increased angiogenesis and recruitment of immunosuppressive cells. This review discusses the roles of the CCL2-CCR2 axis and the tumor microenvironment in cancer progression and their future roles in cancer therapy.
Project description:The CCL2-CCR2 signaling axis has generated increasing interest in recent years due to its association with the progression of cancer. Although first described as a chemotactic molecule with physiological roles in regulating inflammation, recent studies have revealed a pro-tumorigenic function for CCL2 in favoring cancer development and subsequent metastasis. CCL2 binds the cognate receptor CCR2, and together this signaling pair has been shown to have multiple pro-tumorigenic roles, from mediating tumor growth and angiogenesis to recruiting and usurping host stromal cells to support tumor progression. The importance of CCL2-CCR2 signaling has been further championed by the establishment of clinical trials targeting this signaling pair in solid and metastatic cancers. Here we review the roles of CCL2-CCR2 signaling in the development and progression of cancer metastasis. We further evaluate the outcome of several clinical trials targeting either CCL2 or CCR2, and discuss the prospects and challenges of manipulating CCL2-CCR2 interaction as a potential approach for combating metastatic disease.
Project description:Monocytes are mobilized to sites of infection via interaction between the chemokine MCP-1 and its receptor, CCR2, at which point they differentiate into macrophages that mediate potent antimicrobial effects. In this study, we investigated the mechanisms by which monocytes are mobilized in response to systemic challenge with the intracellular bacterium Francisella tularensis. We found that mice deficient in MyD88, interferon-? (IFN?)R or CCR2 all had defects in the expansion of splenic monocyte populations upon F. tularensis challenge, and in control of F. tularensis infection. Interestingly, MyD88-deficient mice were defective in production of IFN?, and IFN?R-deficient mice exhibited defective production of MCP-1, the ligand for CCR2. Transplantation of IFN?R-deficient bone marrow (BM) into wild-type mice further suggested that mobilization of monocytes in response to F. tularensis challenge required IFN?R expression on BM-derived cells. These studies define a critical host defense circuit wherein MyD88-dependent IFN? production signals via IFN?R expressed on BM-derived cells, resulting in MCP-1 production and activation of CCR2-dependent mobilization of monocytes in the innate immune response to systemic F. tularensis challenge.