Unknown

Dataset Information

0

Activation of the cystic fibrosis transmembrane conductance regulator by the flavonoid quercetin: potential use as a biomarker of ?F508 cystic fibrosis transmembrane conductance regulator rescue.


ABSTRACT: Therapies to correct the ?F508 cystic fibrosis transmembrane conductance regulator (CFTR) folding defect require sensitive methods to detect channel activity in vivo. The ?? adrenergic receptor agonists, which provide the CFTR stimuli commonly used in nasal potential difference assays, may not overcome the channel gating defects seen in ?F508 CFTR after plasma membrane localization. In this study, we identify an agent, quercetin, that enhances the detection of surface ?F508 CFTR, and is suitable for nasal perfusion. A screen of flavonoids in CFBE41o? cells stably transduced with ?F508 CFTR, corrected to the cell surface with low temperature growth, revealed that quercetin stimulated an increase in the short-circuit current. This increase was dose-dependent in both Fisher rat thyroid and CFBE41o? cells. High concentrations inhibited Cl? conductance. In CFBE41o? airway cells, quercetin (20 ?g/ml) activated ?F508 CFTR, whereas the ?? adrenergic receptor agonist isoproterenol did not. Quercetin had limited effects on cAMP levels, but did not produce detectable phosphorylation of the isolated CFTR R-domain, suggesting an activation independent of channel phosphorylation. When perfused in the nares of Cftr(+) mice, quercetin (20 ?g/ml) produced a hyperpolarization of the potential difference that was absent in Cftr(-/-) mice. Finally, quercetin-induced, dose-dependent hyperpolarization of the nasal potential difference was also seen in normal human subjects. Quercetin activates CFTR-mediated anion transport in respiratory epithelia in vitro and in vivo, and may be useful in studies intended to detect the rescue of ?F508 CFTR by nasal potential difference.

SUBMITTER: Pyle LC 

PROVIDER: S-EPMC2970857 | biostudies-other | 2010 Nov

REPOSITORIES: biostudies-other

altmetric image

Publications

Activation of the cystic fibrosis transmembrane conductance regulator by the flavonoid quercetin: potential use as a biomarker of ΔF508 cystic fibrosis transmembrane conductance regulator rescue.

Pyle Louise C LC   Fulton Jennifer C JC   Sloane Peter A PA   Backer Kyle K   Mazur Marina M   Prasain Jeevan J   Barnes Stephen S   Clancy J P JP   Rowe Steven M SM  

American journal of respiratory cell and molecular biology 20091230 5


Therapies to correct the ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) folding defect require sensitive methods to detect channel activity in vivo. The β₂ adrenergic receptor agonists, which provide the CFTR stimuli commonly used in nasal potential difference assays, may not overcome the channel gating defects seen in ΔF508 CFTR after plasma membrane localization. In this study, we identify an agent, quercetin, that enhances the detection of surface ΔF508 CFTR, and is suitable  ...[more]

Similar Datasets

| S-EPMC4189493 | biostudies-literature
2006-03-24 | GSE4513 | GEO
| S-EPMC3552343 | biostudies-literature
| S-EPMC3277286 | biostudies-literature
| S-EPMC5207249 | biostudies-literature
| S-EPMC3271874 | biostudies-other
| S-EPMC5036583 | biostudies-literature
| S-EPMC6822231 | biostudies-literature
| S-EPMC5833759 | biostudies-literature
| S-EPMC8576290 | biostudies-literature