Unknown

Dataset Information

0

Doxorubicin bypasses the cytoprotective effects of eIF2? phosphorylation and promotes PKR-mediated cell death.


ABSTRACT: The eukaryotic cell responds to various forms of environmental stress by adjusting the rates of mRNA translation thus facilitating adaptation to the assaulting stress. One of the major pathways that control protein synthesis involves the phosphorylation of the ?-subunit of eukaryotic initiation factor eIF2 at serine 51. Different forms of DNA damage were shown to induce eIF2? phosphorylation by using PERK, GCN2 or PKR. However, the specificity of the eIF2? kinases and the biological role of eIF2? phosphorylation pathway in the DNA damage response (DDR) induced by chemotherapeutics are not known. Herein, we show that PKR is the eIF2? kinase that responds to DDR induced by doxorubicin. We show that activation of PKR integrates two signaling pathways with opposing biological outcomes. More specifically, induction of eIF2? phosphorylation has a cytoprotective role, whereas activation of c-jun N-terminal kinase (JNK) by PKR promotes cell death in response to doxorubicin. We further show that the proapoptotic effects of JNK activation prevail over the cytoprotection mediated by eIF2? phosphorylation. These findings reveal that PKR can be an important inducer of cell death in response to chemotherapies through its ability to act independently of eIF2? phosphorylation.

SUBMITTER: Peidis P 

PROVIDER: S-EPMC3131862 | biostudies-other | 2011 Jan

REPOSITORIES: biostudies-other

altmetric image

Publications

Doxorubicin bypasses the cytoprotective effects of eIF2α phosphorylation and promotes PKR-mediated cell death.

Peidis P P   Papadakis A I AI   Muaddi H H   Richard S S   Koromilas A E AE  

Cell death and differentiation 20100618 1


The eukaryotic cell responds to various forms of environmental stress by adjusting the rates of mRNA translation thus facilitating adaptation to the assaulting stress. One of the major pathways that control protein synthesis involves the phosphorylation of the α-subunit of eukaryotic initiation factor eIF2 at serine 51. Different forms of DNA damage were shown to induce eIF2α phosphorylation by using PERK, GCN2 or PKR. However, the specificity of the eIF2α kinases and the biological role of eIF2  ...[more]

Similar Datasets

| S-EPMC3883705 | biostudies-literature
| S-EPMC6113215 | biostudies-literature
| S-EPMC4439210 | biostudies-literature
| S-EPMC4716296 | biostudies-literature
| S-EPMC4188393 | biostudies-literature
| S-EPMC5841272 | biostudies-literature
| S-EPMC3454339 | biostudies-literature
| S-EPMC3078799 | biostudies-literature
| S-EPMC4729668 | biostudies-literature
| S-EPMC3442399 | biostudies-literature