Unknown

Dataset Information

0

Modulation of M4 muscarinic acetylcholine receptors by interacting proteins.


ABSTRACT: Protein-protein interactions represent an important mechanism for posttranslational modifications of protein expression and function. In brain cells, surface-expressed and membrane-bound neurotransmitter receptors are common proteins that undergo dynamic protein-protein interactions between their intracellular domains and submembranous regulatory proteins. Recently, the Gα(i/o)-coupled muscarinic M4 receptor (M4R) has been revealed to be one of these receptors. Through direct interaction with the intracellular loops or C-terminal tails of M4Rs, M4R interacting proteins (M4RIPs) vigorously regulate the efficacy of M4R signaling. A synapse-enriched protein kinase, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), exemplifies a prototype model of M4RIPs, and is capable of binding to the second intracellular loop of M4Rs. Through an activity- and phosphorylation-dependent mechanism, CaMKII potentiates the M4R/Gα(i/o)-mediated inhibition of M4R efficacy in inhibiting adenylyl cyclase and cAMP production. In striatal neurons where M4Rs are most abundantly expressed, M4RIPs dynamically control M4R activity to maintain a proper cholinergic tone in these neurons. This is critical for maintaining the acetylcholine-dopamine balance in the basal ganglia, which determines the behavioral responsiveness to dopamine stimulation by psychostimulants.

SUBMITTER: Guo ML 

PROVIDER: S-EPMC3139403 | biostudies-other | 2010 Dec

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC4915387 | biostudies-literature
| S-EPMC2666819 | biostudies-literature
| S-EPMC2824442 | biostudies-literature
| S-EPMC3899540 | biostudies-literature
| S-EPMC3928307 | biostudies-literature
| S-EPMC6580797 | biostudies-literature
| S-EPMC2885178 | biostudies-literature
| S-EPMC5718406 | biostudies-literature
| S-EPMC4027492 | biostudies-other
| S-EPMC1574958 | biostudies-literature