Label-free microfluidic characterization of temperature-dependent biomolecular interactions.
Ontology highlight
ABSTRACT: We present a microfluidic approach to characterizing temperature-dependent biomolecular interactions. Solvated L-arginine vasopressin (AVP) and its immobilized RNA aptamer (spiegelmer) were allowed to achieve equilibrium binding in a microchip at a series of selected temperatures. Unbound AVP were collected and analyzed with matrix-assisted laser desorption∕ionization mass spectrometry (MALDI-MS), yielding melting curves that reveal highly temperature-dependent zones in which affinity binding (36-45 °C) or dissociation (25-33 °C and 50-65 °C) occurs. Additionally, temperature-dependent binding isotherms were constructed; from these, thermodynamic quantities involved in binding were extracted. The results illustrated a strong change in heat capacity of interaction for this system, suggesting a considerable thermodynamic influence controlling vasopressin-spiegelmer interaction.
SUBMITTER: Nguyen T
PROVIDER: S-EPMC3170392 | biostudies-other | 2011 Sep
REPOSITORIES: biostudies-other
ACCESS DATA