Unknown

Dataset Information

0

Distortion products and backward-traveling waves in nonlinear active models of the cochlea.


ABSTRACT: This study explores the phenomenology of distortion products in nonlinear cochlear models, predicting their amplitude and phase along the basilar membrane. The existence of a backward-traveling wave at the distortion-product frequency, which has been recently questioned by experiments measuring the phase of basilar-membrane vibration, is discussed. The effect of different modeling choices is analyzed, including feed-forward asymmetry, micromechanical roughness, and breaking of scaling symmetry. The experimentally observed negative slope of basilar-membrane phase is predicted by numerical simulations of nonlinear cochlear models under a wide range of parameters and modeling choices. In active models, positive phase slopes are predicted by the quasi-linear analytical computations and by the fully nonlinear numerical simulations only if the distortion-product sources are localized apical to the observation point and if the stapes reflectivity is unrealistically small. The results of this study predict a negative phase slope whenever the source is distributed over a reasonably wide cochlear region and/or a reasonably high stapes reflectivity is assumed. Therefore, the above-mentioned experiments do not contradict "classical" models of cochlear mechanics and of distortion-product generation.

SUBMITTER: Sisto R 

PROVIDER: S-EPMC3324258 | biostudies-other | 2011 May

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC5023851 | biostudies-other
| S-EPMC5985034 | biostudies-literature
| S-EPMC4364183 | biostudies-literature
| S-EPMC3529054 | biostudies-literature
| S-EPMC3033244 | biostudies-literature
| S-EPMC2171365 | biostudies-literature
| S-EPMC3310706 | biostudies-literature
| S-EPMC3988926 | biostudies-literature
| S-EPMC7928500 | biostudies-literature
| S-EPMC4497724 | biostudies-literature