Effect of mild cognitive impairment and APOE genotype on resting cerebral blood flow and its association with cognition.
Ontology highlight
ABSTRACT: Using whole-brain pulsed arterial spin labeling magnetic resonance imaging, resting cerebral blood flow (CBF) was measured in 20 mild cognitive impairment (MCI; 11 ɛ3 and 9 ɛ4) and 40 demographically matched cognitively normal (CN; 27 ɛ3 and 13 ɛ4) participants. An interaction of apolipoprotein (APOE) genotype (ɛ3 and ɛ4) and cognitive status (CN and MCI) on quantified gray-matter CBF corrected for partial volume effects was found in the left parahippocampal and fusiform gyri (PHG/FG), right middle frontal gyrus, and left medial frontal gyrus. In the PHG/FG, CBF was elevated for CN ɛ4 carriers but decreased for MCI ɛ4 carriers. The opposite pattern was seen in frontal regions: CBF was decreased for CN ɛ4 carriers but increased for MCI ɛ4 carriers. Cerebral blood flow in the PHG/FG was positively correlated with verbal memory for CN ɛ4 adults (r=0.67, P=0.01). Cerebral blood flow in the left medial frontal gyrus was positively correlated with verbal memory for MCI ɛ4 adults (r=0.70, P=0.05). Findings support dynamic pathophysiologic processes in the brain associated with Alzheimer's disease risk and indicate that cognitive status and APOE genotype have interactive effects on CBF. Correlations between CBF and verbal memory suggest a differential neurovascular compensatory response in posterior and anterior cortices with cognitive decline in ɛ4 adults.
Project description:BackgroundExercise training has been associated with greater cerebral blood flow (CBF) in cognitively normal older adults (CN). Alterations in CBF, including compensatory perfusion in the prefrontal cortex, may facilitate changes to the brain's neural infrastructure.ObjectiveTo examine the effects of a 12-week aerobic exercise intervention on resting CBF and cognition in CN and those with mild cognitive impairment (MCI). We hypothesized individuals with MCI (versus CN) would exhibit greater whole brain CBF at baseline and that exercise would mitigate these differences. We also expected CBF changes to parallel cognitive improvements.MethodsBefore and after a 12-week exercise intervention, 18 CN and 17 MCI participants (aged 61-88) underwent aerobic fitness testing, neuropsychological assessment, and an MRI scan. Perfusion-weighted images were collected using a GE 3T MR system. Repeated measures analyses of covariance were used to test within- and between-group differences over time, followed by post-hoc analyses to examine links between CBF changes and cognitive improvement.ResultsAt baseline, individuals with MCI (versus CN) exhibited significantly elevated perfusion in the left insula. Twelve weeks of aerobic exercise reversed this discrepancy. Additionally, exercise improved working memory (measured by the Rey Auditory Verbal Learning Test) and verbal fluency (measured by the Controlled Oral Word Association Test) and differentially altered CBF depending on cognitive status. Among those with MCI, decreased CBF in the left insula and anterior cingulate cortex was associated with improved verbal fluency.ConclusionsExercise training alters CBF and improves cognitive performance in older adults with and without cognitive impairment. Future studies must evaluate the mediating effects of CBF on the association between exercise training and cognition.
Project description:To examine regional cerebral blood flow (rCBF) in incident mild cognitive impairment (MCI) and Alzheimer disease (AD) by using continuous arterial spin-labeling (CASL) magnetic resonance (MR) imaging.This study was approved by the local institutional review board and was compliant with HIPAA regulations. Informed consent was obtained. rCBF was measured in 38 control subjects, 29 MCI patients, and 37 AD patients who were participating in a longitudinal epidemiologic study. Multisection CASL MR imaging with alternating single and double adiabatic inversion pulses and ramp-sampled echo-planar imaging were performed to acquire 19 contiguous axial sections. Voxel-level rCBF was compared among groups by using an analysis of variance design; clusters of voxels with significant group differences were identified. Multiple regression models controlled for age, sex, and presence of hypertension and related the mean rCBF in those clusters to the presence of MCI and AD.MCI and AD patients had decreased rCBF in the posterior cingulate gyrus (P = .01) with extension to the medial precuneus compared with that in control subjects. MCI patients had increased rCBF in the left hippocampus (P < .001), right amygdala (P = .007), and rostral head of the right caudate nucleus and ventral putamen and globus pallidus (P = .003) compared with that in control subjects. AD patients had decreased rCBF relative to that in control subjects and MCI patients in the left inferior parietal (P = .005), left lateral frontal (P < .001), left superior temporal (P = .001), and left orbitofrontal (P = .003) cortices. AD patients had increased rCBF in the right anterior cingulate gyrus (P = .02) compared with that in control subjects.The transition from normal cognition to AD is associated with dynamic pathologic processes in the brain, and this is reflected by both decreases and increases in rCBF. Increases in rCBF suggest a cellular and vascular compensatory process associated with incipient AD.http://radiology.rsnajnls.org/cgi/content/full/2503080751/DC1.
Project description:We investigated the impact of APOE genotype on cerebral blood flow (CBF) in older and younger adults. Forty cognitively normal older adults (16 ε4 carriers, 24 non-ε4 carriers) and 30 younger adults (15 ε4 carriers, 15 non-ε4 carriers) completed a resting-state whole-brain pulsed arterial spin labeling magnetic resonance scan. Main effects of aging were demonstrated wherein older adults had decreased gray matter CBF corrected for partial volume effects compared to younger adults in widespread brain regions. Main effects of APOE genotype were also observed wherein ε4 carriers displayed greater CBF in the left lingual gyrus and precuneus than non-carriers. An interaction between age and APOE genotype in the left anterior cingulate cortex (ACC) was characterized by reduced CBF in older ε4 carriers and increased CBF in young ε4 carriers. Increased CBF in the left ACC resulting from the interaction of age group and APOE genotype was positively correlated with executive functioning in young ε4 adults (r = 0.61, p = 0.04). Results demonstrate APOE genotype differentially impacts cerebrovascular function across the lifespan and may modify the relationship between CBF and cognition. Findings may partially support suggestions that the gene exerts antagonistic pleiotropic effects.
Project description:The thyroid hormones have been reported to be associated with cognitive decline and Alzheimer's disease. The relationship between thyroid function within the normal range and cerebral blood flow in Alzheimer's disease patients has been shown in a recent study. Mild cognitive impairment is often the first stage of Alzheimer's disease; thus, early diagnosis is important. The present study investigated the relationship between thyroid function and regional cerebral blood flow in patients with mild cognitive impairment and Alzheimer's disease. A total of 122 memory clinic outpatients who underwent thyroid function testing and single photon emission computed tomography were divided into mild cognitive impairment, Alzheimer's disease, and Normal groups. Regional cerebral blood flow was calculated using a three-dimensional stereotactic region of interest template in an automated cerebral perfusion single photon emission computed tomography analysis system. Multiple regression analysis adjusted for age and sex was conducted to examine the relationships between thyroid hormones and regional cerebral blood flow. Thyroid stimulating hormone was significantly associated with regional cerebral blood flow in the bilateral temporal, bilateral pericallosal, and bilateral hippocampal regions in the mild cognitive impairment group. In the Alzheimer's disease group, free triiodothyronine was significantly associated with regional cerebral blood flow in the bilateral parietal, right temporal, and bilateral pericallosal regions. The present study showed the association of thyroid stimulating hormone with regional cerebral blood flow in the mild cognitive impairment group and the association of free triiodothyronine with regional cerebral blood flow in the Alzheimer's disease group. These study findings could contribute to the early diagnosis of mild cognitive impairment at general memory clinics and the prevention of subsequent progression to Alzheimer's disease.
Project description:BackgroundA disease severity index (SI) for Alzheimer's disease (AD) has been proposed that summarizes MRI-derived structural measures into a single score using multivariate data analysis.ObjectivesTo longitudinally evaluate the use of the SI to monitor disease progression and predict future progression to AD in mild cognitive impairment (MCI). Further, to investigate the association between longitudinal change in the SI and cognitive impairment, Apolipoprotein E (APOE) genotype as well as the levels of cerebrospinal fluid amyloid-beta 1-42 (A?) peptide.MethodsThe dataset included 195 AD, 145 MCI and 228 control subjects with annual follow-up for three years, where 70 MCI subjects progressed to AD (MCI-p). For each subject the SI was generated at baseline and follow-ups using 55 regional cortical thickness and subcortical volumes measures that extracted by the FreeSurfer longitudinal stream.ResultsMCI-p subjects had a faster increase of the SI over time (p < 0.001). A higher SI at baseline in MCI-p was related to progression to AD at earlier follow-ups (p < 0.001) and worse cognitive impairment (p < 0.001). AD-like MCI patients with the APOE ?4 allele and abnormal A? levels had a faster increase of the SI, independently (p = 0.003 and p = 0.004).ConclusionsLongitudinal changes in the SI reflect structural brain changes and can identify MCI patients at risk of progression to AD. Disease-related brain structural changes are influenced independently by APOE genotype and amyloid pathology. The SI has the potential to be used as a sensitive tool to predict future dementia, monitor disease progression as well as an outcome measure for clinical trials.
Project description:BackgroundThe ε4 allele of the apolipoprotein E (APOE) gene is a strong genetic risk factor for aging-related cognitive decline. However, the causal connection between ε4 alleles and cognition is not well understood. The objective of this study was to identify the roles of cerebral blood flow (CBF) in cognitive-related brain areas in mediating the associations of APOE with cognition.MethodsThe multiple linear regression analyses were conducted on 369 subjects (mean age of 68.8 years; 62.9% of women; 29.3% of APOE ε4 allele carriers). Causal mediation analyses with 5,000 bootstrapped iterations were conducted to explore the mediation effects.ResultAPOE ε4 allele was negatively associated with cognition (P < 0.05) and CBF in the amygdala, hippocampus, middle temporal gyrus, posterior cingulate, and precuneus (all P < 0.05). The effect of the APOE genotype on cognition was partly mediated by the above CBF (all P < 0.05).ConclusionCBF partially mediates the potential links between APOE genotype and cognition. Overall, the APOE ε4 allele may lead to a dysregulation of the vascular structure and function with reduced cerebral perfusion, which in turn leads to cognitive impairment.
Project description:Whether and how the apolipoprotein E (APOE) ε4 genotype specifically modulates brain network connectivity in patients with amnestic mild cognitive impairment (aMCI) remain largely unknown. Here, we employed resting-state ('task-free') functional MRI and network centrality approaches to investigate local (degree centrality, DC) and global (eigenvector centrality, EC) functional integrity in the whole-brain connectome in 156 older adults, including 66 aMCI patients (27 ε4-carriers and 39 non-carriers) and 90 healthy controls (45 ε4-carriers and 45 non-carriers). We observed diagnosis-by-genotype interactions on DC in the left superior/middle frontal gyrus, right middle temporal gyrus and cerebellum, with higher values in the ε4-carriers than non-carriers in the aMCI group. We further observed diagnosis-by-genotype interactions on EC, with higher values in the right middle temporal gyrus but lower values in the medial parts of default-mode network in the ε4-carriers than non-carriers in the aMCI group. Notably, these genotype differences in DC or EC were absent in the control group. Finally, the network connectivity DC values were negatively correlated with cognitive performance in the aMCI ε4-carriers. Our findings suggest that the APOE genotype selectively modulates the functional integration of brain networks in patients with aMCI, thus providing important insight into the gene-connectome interaction in this disease.
Project description:This study investigated the effects of vortioxetine on cognitive function in adults with mild cognitive impairment (MCI). This single-arm, open-label, phase II study enrolled 111 adults with MCI without depressive symptoms to receive 5-10 mg/day vortioxetine for 6 months. Main outcomes assessed: cognitive function [Montreal Cognitive Assessment (MoCA); Digit Symbol Substitution Test (DSST)], disease severity [Clinical Dementia Rating (CDR)], clinician-assessed improvement and safety. Mean MoCA score increased from 24.2 points (baseline) to 29.7 points (month 6), placing most subjects within the cognitively normal range (≥26 points). Compared with baseline, MoCA and DSST scores were significantly improved at months 1, 3 and 6 (P < 0.001 for all). Global CDR scores significantly improved from baseline to month 6 (mean change -0.37 points; P < 0.001), representing an improvement from very mild impairment (0.50 points) to cognitively normal status (0.13 points), mainly in CDR memory scores. At month 6, 89.6% of subjects had improved disease severity. Adverse events and adverse drug reactions were reported in 9.9% (n = 11) and 2.7% (n = 3) of subjects, respectively. Vortioxetine treatment was associated with significant improvement in cognitive function and a favorable safety profile in community-dwelling older adults with MCI. Given the lack of evidence for efficacious pharmacologic interventions for MCI, our results are encouraging and warrant further investigation.
Project description:BackgroundThis is the first longitudinal study to assess regional cerebral blood flow (rCBF) changes during the progression from normal control (NC) through mild cognitive impairment (MCI) and Alzheimer's disease (AD).ObjectiveWe aim to determine if perfusion MRI biomarkers, derived from our prior cross-sectional study, can predict the onset and cognitive decline of AD.MethodsPerfusion MRIs using arterial spin labeling (ASL) were acquired in 15 stable-NC, 14 NC-to-MCI, 16 stable-MCI, and 18 MCI/AD-to-AD participants from the Cardiovascular Health Study (CHS) cognition study. Group comparisons, predictions of AD conversion and time to conversion, and Modified Mini-Mental State Examination (3MSE) from rCBF were performed.ResultsCompared to the stable-NC group: 1) the stable-MCI group exhibited rCBF decreases in the right temporoparietal (p = 0.00010) and right inferior frontal and insula (p = 0.0094) regions; and 2) the MCI/AD-to-AD group exhibited rCBF decreases in the bilateral temporoparietal regions (p = 0.00062 and 0.0035). Compared to the NC-to-MCI group, the stable-MCI group exhibited a rCBF decrease in the right hippocampus region (p = 0.0053). The baseline rCBF values in the posterior cingulate cortex (PCC) (p = 0.0043), bilateral superior medial frontal regions (BSMF) (p = 0.012), and left inferior frontal (p = 0.010) regions predicted the 3MSE scores for all the participants at follow-up. The baseline rCBF in the PCC and BSMF regions predicted the conversion and time to conversion from MCI to AD (p < 0.05; not significant after multiple corrections).ConclusionWe demonstrated the feasibility of ASL in detecting rCBF changes in the typical AD-affected regions and the predictive value of baseline rCBF on AD conversion and cognitive decline.
Project description:BackgroundAlthough dementia is associated with both global and regional cerebral blood flow (CBF) changes, little is known about cerebral perfusion in the early pre-clinical stages of cognitive decline preceding overt cognitive dysfunction. The aim of this study was to investigate the association of early sub-clinical cognitive decline with CBF.Materials and methodsThe study participants were recruited from a cohort of Danish men born in 1953. Based on a regression model we selected men who performed better (Group A, n = 94) and poorer (Group B, n = 95) on cognitive testing at age 57 than expected from testing at age 20. Participants underwent supplementary cognitive testing, blood sampling and MRI including measurements of regional and global CBF.ResultsRegional CBF was lower in group B than in group A in the posterior cingulate gyrus and the precuneus. The associations were attenuated when corrected for global atrophy, but remained significant in regions of interest based analysis adjusting for regional gray matter volume and vascular risk factors. No influence of group on global CBF was observed.ConclusionsWe conclude that early sub-clinical cognitive decline is associated with reduced perfusion in the precuneus and posterior cingulate gyrus independently of regional atrophy and vascular risk factors, but cannot be statistically separated from an association with global atrophy.