"Reversine" and its 2-substituted adenine derivatives as potent and selective A3 adenosine receptor antagonists.
Ontology highlight
ABSTRACT: The dedifferentiation agent "reversine" [2-(4-morpholinoanilino)-N(6)-cyclohexyladenine 2] was found to be a moderately potent antagonist for the human A(3) adenosine receptor (AR) with a K(i) value of 0.66 microM. This result prompted an exploration of the structure-activity relationship of related derivatives, synthesized via sequential substitution of 6-chloro-2-fluoropurine with selected nucleophiles. Optimization of substituents at these two positions identified 2-(phenylamino)-N(6)-cyclohexyladenine (12), 2-(phenylamino)-N(6)-cycloheptyladenine (19), and 2-phenylamino-N(6)-endo-norbornyladenine (21) as potent A(3) AR ligands with K(i) values of 51, 42, and 37 nM, respectively, with 30-200-fold selectivity in comparison to A(1) and A(2A) ARs. The most selective A(3) AR antagonist (>200-fold) was 2-(phenyloxy)-N(6)-cyclohexyladenine (22). 9-Methylation of 12, but not 19, was well-tolerated in A(3) AR binding. Extension of the 2-phenylamino group to 2-benzyl- and 2-(2-phenylethylamino) reduced affinity. In the series of 2-(phenylamino), 2-(phenyloxy), and 2-(phenylthio) substitutions, the order of affinity at the A(3) AR was oxy > or = amino > thio. Selected derivatives, including reversine (K(B) value of 466 nM via Schild analysis), competitively antagonized the functional effects of a selective A(3) AR agonist, i.e., inhibition of forskolin-stimulated cAMP production in stably transfected Chinese hamster ovary (CHO) cells. These results are in agreement with other studies suggesting the presence of a lipophilic pocket in the AR binding site that is filled by moderately sized cycloalkyl rings at the N(6) position of both adenine and adenosine derivatives. Thus, the compound series reported herein comprise an important new series of selective A(3) AR antagonists. We were unable to reproduce the dedifferentiation effect of reversine, previously reported, or to demonstrate any connection between A(3) AR antagonist effects and dedifferentiation.
SUBMITTER: Perreira M
PROVIDER: S-EPMC3474371 | biostudies-other | 2005 Jul
REPOSITORIES: biostudies-other
ACCESS DATA