Unknown

Dataset Information

0

C-Fms signaling mediates neurofibromatosis Type-1 osteoclast gain-in-functions.


ABSTRACT: Skeletal abnormalities including osteoporosis and osteopenia occur frequently in both pediatric and adult neurofibromatosis type 1 (NF1) patients. NF1 (Nf1) haploinsufficient osteoclasts and osteoclast progenitors derived from both NF1 patients and Nf1(+/-) mice exhibit increased differentiation, migration, and bone resorptive capacity in vitro, mediated by hyperactivation of p21(Ras) in response to limiting concentrations of macrophage-colony stimulating factor (M-CSF). Here, we show that M-CSF binding to its receptor, c-Fms, results in increased c-Fms activation in Nf1(+/) (-) osteoclast progenitors, mediating multiple gain-in-functions through the downstream effectors Erk1/2 and p90RSK. PLX3397, a potent and selective c-Fms inhibitor, attenuated M-CSF mediated Nf1(+/-) osteoclast migration by 50%, adhesion by 70%, and pit formation by 60%. In vivo, we administered PLX3397 to Nf1(+/-) osteoporotic mice induced by ovariectomy (OVX) and evaluated changes in bone mass and skeletal architecture. We found that PLX3397 prevented bone loss in Nf1(+/-)-OVX mice by reducing osteoclast differentiation and bone resorptive activity in vivo. Collectively, these results implicate the M-CSF/c-Fms signaling axis as a critical pathway underlying the aberrant functioning of Nf1 haploinsufficient osteoclasts and may provide a potential therapeutic target for treating NF1 associated osteoporosis and osteopenia.

SUBMITTER: He Y 

PROVIDER: S-EPMC3492362 | biostudies-other | 2012

REPOSITORIES: biostudies-other

altmetric image

Publications


Skeletal abnormalities including osteoporosis and osteopenia occur frequently in both pediatric and adult neurofibromatosis type 1 (NF1) patients. NF1 (Nf1) haploinsufficient osteoclasts and osteoclast progenitors derived from both NF1 patients and Nf1(+/-) mice exhibit increased differentiation, migration, and bone resorptive capacity in vitro, mediated by hyperactivation of p21(Ras) in response to limiting concentrations of macrophage-colony stimulating factor (M-CSF). Here, we show that M-CSF  ...[more]

Similar Datasets

2016-04-30 | GSE61528 | GEO
| S-EPMC7658220 | biostudies-literature
| S-EPMC4737679 | biostudies-literature
| S-EPMC2584874 | biostudies-other
| S-EPMC2799742 | biostudies-literature
| S-EPMC4355282 | biostudies-literature
| S-EPMC5911481 | biostudies-literature
| S-EPMC7465002 | biostudies-literature