ABSTRACT: The myeloperoxidase (MPO) and neutrophil elastase genes are expressed specifically in immature myeloid cells. The integrity of a polyomavirus enhancer core sequence, 5'-AACCACA-3', is critical to the activity of the murine MPO proximal enhancer. This element binds two species, myeloid nuclear factors 1 alpha and 1 beta (MyNF1 alpha and -beta), present in 32D cl3 myeloid cell nuclear extracts. The levels of the MyNF1s increase during early 32D cl3 cell granulocytic differentiation. Both MyNF1 alpha and -beta supershift with an antiserum raised by using a peptide derived from the N terminus of polyomavirus enhancer-binding protein 2/core-binding factor (PEBP2/CBF) alpha subunit. The specific peptide inhibits these supershifts. In vitro-translated PEBP2/CBF DNA-binding domain binds the murine MPO PEBP2/CBF site. An alternate PEBP2/CBF consensus site, 5'-GACCGCA-3', but not a simian virus 40 enhancer core sequence, 5'-TTCCACA-3', binds the MyNF1s in vitro and activates a minimal murine MPO-thymidine kinase promoter in vivo. The murine neutrophil elastase gene 100-bp 5'-flanking sequences contain several functional elements, including potential binding sites for PU.1, C/EBP, c-Myb, and PEBP2/CBF. The functional element 5'-GGCCACA-3' located at positions -66 to 72 differs from the PEBP2/CBF consensus (5'-PuACCPuCA-3') only by an A-to-G transition at position 2. This DNA element binds MyNF1 alpha and -beta weakly. The N terminis of two PEBP2/CBF alpha subunit family members, PEBP2 alpha A and PEBP2 alpha B (murine AML1), are nearly identical, and 32D c13 cl3 cells contain both corresponding mRNAs. Since t(8;21), t(3;21), and inv(16), associated with myeloid leukemias, disrupt subunits of PEBP2/CBF, we speculate that the resulting oncoproteins, AML1-ETO, AML1-EAP, AML1-Evi1, and CBF beta-MYH11, inhibit early myeloid differentiation.