A proposed mechanism for promoter-associated DNA rearrangement events at a variant surface glycoprotein gene expression site.
Ontology highlight
ABSTRACT: The expressed variant cell surface glycoprotein (VSG) gene of the protozoan parasite Trypanosoma brucei is invariably found at one of several telomeric VSG gene expression sites (ESs). The active ES in variant 118 clone 1 is found on a 1.5-Mb chromosome, and the promoter region is located more than 45 kb upstream of the VSG gene. We had previously shown that DNA rearrangement events occurred in the promoter region, specifically at inactivation of this ES (K. M. Gottesdiener, H.-M. Chung, S. L. Brown, M. G.-S. Lee, and L. H. T. Van der Ploeg, Mol. Cell. Biol. 11:2467-2477, 1991). In this report, we describe the cloning of the entire 17-kb promoter region, which revealed the presence of two identical 2.15-kb tandem promoter repeats separated by 13 kb of DNA. The two virtually identical promoter repeats both function efficiently in directing transcription in transient transfection assays in insect-form trypanosomes. We characterized the DNA rearrangement events that occur at ES inactivation, and by studying both of the reciprocal products of this recombination event, we infer that these result from direct (promoter) repeat recombination, formation of heteroduplex DNA, and a reciprocal exchange event that releases a circular DNA as a side product of the reaction. The finding of DNA recombinational events in a region of the VSG gene ES that encodes the promoter(s), and their relatively frequent occurrence at ES inactivation, suggests a possible role in ES control.
SUBMITTER: Gottesdiener KM
PROVIDER: S-EPMC360405 | biostudies-other | 1992 Oct
REPOSITORIES: biostudies-other
ACCESS DATA