Unknown

Dataset Information

0

Recurrent connections form a phase-locking neuronal tuner for frequency-dependent selective communication.


ABSTRACT: The brain requires task-dependent interregional coherence of information flow in the anatomically connected neural network. However, it is still unclear how a neuronal group can flexibly select its communication target. In this study, we revealed a hidden routing mechanism on the basis of recurrent connections. Our simulation results based on the spike response model show that recurrent connections between excitatory and inhibitory neurons modulate the resonant frequency of a local neuronal group, and that this modulation enables a neuronal group to receive selective information by filtering a preferred frequency component. We also found that the recurrent connection facilitates the successful routing of any necessary information flow between neuronal groups through frequency-dependent resonance of synchronized oscillations. Taken together, these results suggest that recurrent connections act as a phase-locking neuronal tuner which determines the resonant frequency of a local group and thereby controls the preferential routing of incoming signals.

SUBMITTER: Shin D 

PROVIDER: S-EPMC3755292 | biostudies-other | 2013

REPOSITORIES: biostudies-other

altmetric image

Publications

Recurrent connections form a phase-locking neuronal tuner for frequency-dependent selective communication.

Shin Dongkwan D   Cho Kwang-Hyun KH  

Scientific reports 20130101


The brain requires task-dependent interregional coherence of information flow in the anatomically connected neural network. However, it is still unclear how a neuronal group can flexibly select its communication target. In this study, we revealed a hidden routing mechanism on the basis of recurrent connections. Our simulation results based on the spike response model show that recurrent connections between excitatory and inhibitory neurons modulate the resonant frequency of a local neuronal grou  ...[more]

Similar Datasets

| S-EPMC4669304 | biostudies-literature
| S-EPMC9325720 | biostudies-literature
| S-EPMC6592221 | biostudies-literature
| S-EPMC2731936 | biostudies-other
| S-EPMC3295799 | biostudies-literature
| S-EPMC4030313 | biostudies-literature
| S-EPMC7182014 | biostudies-literature
| S-EPMC4090128 | biostudies-literature
| S-EPMC3376706 | biostudies-literature
| S-EPMC5540901 | biostudies-other