{110} Slip with {112} slip traces in bcc Tungsten.
Ontology highlight
ABSTRACT: While propagation of dislocations in body centered cubic metals at low temperature is understood in terms of elementary steps on {110} planes, slip traces correspond often with other crystallographic or non-crystallographic planes. In the past, characterization of slip was limited to post-mortem electron microscopy and slip trace analysis on the sample surface. Here with in-situ Laue diffraction experiments during micro-compression we demonstrate that when two {110} planes containing the same slip direction experience the same resolved shear stress, sharp slip traces are observed on a {112} plane. When however the {110} planes are slightly differently stressed, macroscopic strain is measured on the individual planes and collective cross-slip is used to fulfill mechanical boundary conditions, resulting in a zig-zag or broad slip trace on the sample surface. We anticipate that such dynamics can occur in polycrystalline metals due to local inhomogeneous stress distributions and can cause unusual slip transfer among grains.
Project description:Comparison of transcriptional profiles after exposure of HaCaT cells to WC or WC-Co nanoparticles and respective amount of free cobalt in form of CoCl2 after 3 hours and 3 days of exposure. Genes responding especially to nanoparticles or leached cobalt ions should be determined.
Project description:Both laboratory experiments and dynamic simulations suggest that earthquakes can be preceded by a precursory phase of slow slip. Observing processes leading to an acceleration or spreading of slow slip along faults is therefore key to understand the dynamics potentially leading to seismic ruptures. Here, we use continuous GPS measurements of the ground displacement to image the daily slip along the fault beneath Vancouver Island during a slow slip event in 2013. We image the coalescence of three originally distinct slow slip fronts merging together. We show that during coalescence phases lasting for 2 to 5 days, the rate of energy (moment) release significantly increases. This observation supports the view proposed by theoretical and experimental studies that the coalescence of slow slip fronts is a possible mechanism for initiating earthquakes.
Project description:Cultures were grown photosynthetically in the media supplemented with either Molibdenium (control), Tungsten instead of Molibdenium or conbination of the both metal ions.
Project description:When people encounter emotional events, their memory for those events is typically enhanced. But it has been unclear how emotionally arousing events influence memory for preceding information. Does emotional arousal induce retrograde amnesia or retrograde enhancement? The current study revealed that this depends on the top-down goal relevance of the preceding information. Across three studies, we found that emotional arousal induced by one image facilitated memory for the preceding neutral item when people prioritized that neutral item. In contrast, an emotionally arousing image impaired memory for the preceding neutral item when people did not prioritize that neutral item. Emotional arousal elicited by both negative and positive pictures showed this pattern of enhancing or impairing memory for the preceding stimulus depending on its priority. These results indicate that emotional arousal amplifies the effects of top-down priority in memory formation.
Project description:Plasmodium falciparum malaria-infected red blood cells (IRBCs), or erythrocytes, avoid splenic clearance by adhering to host endothelium. Upregulation of endothelial receptors intercellular adhesion molecule-1 (ICAM-1) and cluster of differentiation 36 (CD36) are associated with severe disease pathology. Most in vitro studies of IRBCs interacting with these molecules were conducted at room temperature. However, as IRBCs are exposed to temperature variations between 37°C (body temperature) and 41°C (febrile temperature) in the host, it is important to understand IRBC-receptor interactions at these physiologically relevant temperatures. Here, we probe IRBC interactions against ICAM-1 and CD36 at 37 and 41°C. Single bond force-clamp spectroscopy is used to determine the bond dissociation rates and hence, unravel the nature of the IRBC-receptor interaction. The association rates are also extracted from a multiple bond flow assay using a cellular stochastic model. Surprisingly, IRBC-ICAM-1 bond transits from a catch-slip bond at 37°C toward a slip bond at 41°C. Moreover, binding affinities of both IRBC-ICAM-1 and IRBC-CD36 decrease as the temperature rises from 37 to 41°C. This study highlights the significance of examining receptor-ligand interactions at physiologically relevant temperatures and reveals biophysical insight into the temperature dependence of P. falciparum malaria cytoadherent bonds.
Project description:Earthquake-like ruptures break the contacts that form the frictional interface separating contacting bodies and mediate the onset of frictional motion (stick-slip). The slip (motion) of the interface immediately resulting from the rupture that initiates each stick-slip event is generally much smaller than the total slip logged over the duration of the event. Slip after the onset of friction is generally attributed to continuous motion globally attributed to 'dynamic friction'. Here we show, by means of direct measurements of real contact area and slip at the frictional interface, that sequences of myriad hitherto invisible, secondary ruptures are triggered immediately in the wake of each initial rupture. Each secondary rupture generates incremental slip that, when not resolved, may appear as steady sliding of the interface. Each slip increment is linked, via fracture mechanics, to corresponding variations of contact area and local strain. Only by accounting for the contributions of these secondary ruptures can the accumulated interface slip be described. These results have important ramifications both to our fundamental understanding of frictional motion as well as to the essential role of aftershocks within natural faults in generating earthquake-mediated slip.
Project description:The dataset displays the pharmacokinetics data obtained from the TRACES pilot study. The nine patients included were undergoing haemorrhagic caesarean section (blood loss > 800 mL) and receiving a single i.v dose of tranexamic acid (0.5, 1 or 2 g over 1 min). The dataset gathers the tranexamic acid blood and urinary concentrations. With these first elements, a pharmacokinetic compartment model was built as described in Gilliot et al. and the individual pharmacokinetic parameters were estimated. In parallel, the patients anthropometric, biological, and clinical characteristics were collected. The correlation between the patient data and the estimated individual pharmacokinetic parameters were tested. The correlation tests revealed that the dose, the height, the body weight, and the ideal bodyweight had and impact on the volume of distribution of tranexamic acid. According to these results, these latter covariates were explored using a multi-regression analysis in Gilliot et al.
Project description:To perform nontrivial, real-time computations on a sensory input stream, biological systems must retain a short-term memory trace of their recent inputs. It has been proposed that generic high-dimensional dynamical systems could retain a memory trace for past inputs in their current state. This raises important questions about the fundamental limits of such memory traces and the properties required of dynamical systems to achieve these limits. We address these issues by applying Fisher information theory to dynamical systems driven by time-dependent signals corrupted by noise. We introduce the Fisher Memory Curve (FMC) as a measure of the signal-to-noise ratio (SNR) embedded in the dynamical state relative to the input SNR. The integrated FMC indicates the total memory capacity. We apply this theory to linear neuronal networks and show that the capacity of networks with normal connectivity matrices is exactly 1 and that of any network of N neurons is, at most, N. A nonnormal network achieving this bound is subject to stringent design constraints: It must have a hidden feedforward architecture that superlinearly amplifies its input for a time of order N, and the input connectivity must optimally match this architecture. The memory capacity of networks subject to saturating nonlinearities is further limited, and cannot exceed square root N. This limit can be realized by feedforward structures with divergent fan out that distributes the signal across neurons, thereby avoiding saturation. We illustrate the generality of the theory by showing that memory in fluid systems can be sustained by transient nonnormal amplification due to convective instability or the onset of turbulence.
Project description:In active tectonic settings dominated by strike-slip kinematics, slip partitioning across subparallel faults is a common feature; therefore, assessing the degree of partitioning and strain localization is paramount for seismic hazard assessments. Here, we estimate a slip rate of 18.8 ± 2.0 mm/year over the past 9.0 ± 0.1 ka for a single strand of the Liquiñe-Ofqui Fault System, which straddles the Main Cordillera in Southern Chile. This Holocene rate accounts for ~ 82% of the trench-parallel component of oblique plate convergence and is similar to million-year estimates integrated over the entire fault system. Our results imply that strain localizes on a single fault at millennial time scale but over longer time scales strain localization is not sustained. The fast millennial slip rate in the absence of historical Mw > 6.5 earthquakes along the Liquiñe-Ofqui Fault System implies either a component of aseismic slip or Mw ~ 7 earthquakes involving multi-trace ruptures and > 150-year repeat times. Our results have implications for the understanding of strike-slip fault system dynamics within volcanic arcs and seismic hazard assessments.