Unknown

Dataset Information

0

Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice.


ABSTRACT: Understanding the pharmacokinetics, blood compatibility, biodistribution and clearance properties of nanoparticles is of great importance to their translation to clinical application. In this paper we report the biodistribution and pharmacokinetic properties of tobacco mosaic virus (TMV) in the forms of 300×18nm(2) rods and 54nm-sized spheres. The availability of rods and spheres made of the same protein provides a unique scaffold to study the effect of nanoparticle shape on in vivo fate. For enhanced biocompatibility, we also considered a PEGylated formulation. Overall, the versions of nanoparticles exhibited comparable in vivo profiles; a few differences were noted: data indicate that rods circulate longer than spheres, illustrating the effect that shape plays on circulation. Also, PEGylation increased circulation times. We found that macrophages in the liver and spleen cleared the TMV rods and spheres from circulation. In the spleen, the viral nanoparticles trafficked through the marginal zone before eventually co-localizing in B-cell follicles. TMV rods and spheres were cleared from the liver and spleen within days with no apparent changes in histology, it was noted that spheres are more rapidly cleared from tissues compared to rods. Further, blood biocompatibility was supported, as none of the formulations induced clotting or hemolysis. This work lays the foundation for further application and tailoring of TMV for biomedical applications.

SUBMITTER: Bruckman MA 

PROVIDER: S-EPMC3906584 | biostudies-other | 2014 Jan

REPOSITORIES: biostudies-other

altmetric image

Publications

Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice.

Bruckman Michael A MA   Randolph Lauren N LN   VanMeter Allen A   Hern Stephen S   Shoffstall Andrew J AJ   Taurog Rebecca E RE   Steinmetz Nicole F NF  

Virology 20131205


Understanding the pharmacokinetics, blood compatibility, biodistribution and clearance properties of nanoparticles is of great importance to their translation to clinical application. In this paper we report the biodistribution and pharmacokinetic properties of tobacco mosaic virus (TMV) in the forms of 300×18nm(2) rods and 54nm-sized spheres. The availability of rods and spheres made of the same protein provides a unique scaffold to study the effect of nanoparticle shape on in vivo fate. For en  ...[more]

Similar Datasets

| S-EPMC3624747 | biostudies-literature
| S-EPMC5572394 | biostudies-literature
| S-EPMC4157665 | biostudies-literature
| S-EPMC3384888 | biostudies-literature
| S-EPMC3952489 | biostudies-other
| PRJNA665939 | ENA
| S-EPMC2647992 | biostudies-literature
| S-EPMC4787025 | biostudies-literature
| S-EPMC4283727 | biostudies-literature
| S-EPMC4648114 | biostudies-other