Loss of E-cadherin activates EGFR-MEK/ERK signaling, which promotes invasion via the ZEB1/MMP2 axis in non-small cell lung cancer.
Ontology highlight
ABSTRACT: Loss of E-cadherin, a hallmark of epithelial-mesenchymal transition (EMT), can significantly affect metastatic dissemination. However, the molecular mechanism of EMT-associated metastatic dissemination by loss of E-cadherin still remains unclear in non-small cell lung cancers (NSCLCs). In the present study, we show that the knockdown of E-cadherin was sufficient to convert A549 NSCLC cells into mesenchymal type with the concurrent up-regulation of typical EMT inducers such as ZEB1 and TWIST1. Interestingly, the EMT-induced cells by E-cadherin depletion facilitate invasion in a matrix metalloproteinase-2 (MMP2)-dependent manner with aberrant activation of EGFR signaling. We demonstrated that the elevated invasiveness was a result of the activated EGFR-MEK/ERK signaling, which in turn leads to ZEB1 dependent MMP2 induction. These results suggest that the EGFR-MEK/ERK/ZEB1/MMP2 axis is responsible for promoted invasion in EMT-induced NSCLCs. Consistently, ERK activation and loss of E-cadherin were both observed in the disseminating cancer cells at the invasive tumor fronts in NSCLS cancer tissues. Thereby, these data suggest that the EGFR-MEK/ERK signaling would be a promising molecular target to control aberrant MMP2 expression and consequent invasion in the EMT-induced NSCSLs.
SUBMITTER: Bae GY
PROVIDER: S-EPMC3926845 | biostudies-other | 2013 Dec
REPOSITORIES: biostudies-other
ACCESS DATA