Abrogation of MLL-AF10 and CALM-AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l.
Ontology highlight
ABSTRACT: The t(10;11)(p12;q23) translocation and the t(10;11)(p12;q14) translocation, which encode the MLL (mixed lineage leukemia)-AF10 and CALM (clathrin assembly lymphoid myeloid leukemia)-AF10 fusion oncoproteins, respectively, are two recurrent chromosomal rearrangements observed in patients with acute myeloid leukemia and acute lymphoblastic leukemia. Here, we demonstrate that MLL-AF10 and CALM-AF10-mediated transformation is dependent on the H3K79 methyltransferase Dot1l using genetic and pharmacological approaches in mouse models. Targeted disruption of Dot1l using a conditional knockout mouse model abolished in vitro transformation of murine bone marrow cells and in vivo initiation and maintenance of MLL-AF10 or CALM-AF10 leukemia. The treatment of MLL-AF10 and CALM-AF10 transformed cells with EPZ004777, a specific small-molecule inhibitor of Dot1l, suppressed expression of leukemogenic genes such as Hoxa cluster genes and Meis1, and selectively impaired proliferation of MLL-AF10 and CALM-AF10 transformed cells. Pretreatment with EPZ004777 profoundly decreased the in vivo spleen-colony-forming ability of MLL-AF10 or CALM-AF10 transformed bone marrow cells. These results show that patients with leukemia-bearing chromosomal translocations that involve the AF10 gene may benefit from small-molecule therapeutics that inhibit H3K79 methylation.
SUBMITTER: Chen L
PROVIDER: S-EPMC3932800 | biostudies-other | 2013 Apr
REPOSITORIES: biostudies-other
ACCESS DATA