Robotic microsurgical training and evaluation.
Ontology highlight
ABSTRACT: Robotic surgery has expanded rapidly over the past two decades and is in widespread use among the surgical subspecialties. Clinical applications in plastic surgery have emerged gradually over the last few years. One of the promising applications is robotic-assisted microvascular anastomosis. Here the authors first describe a process by which an assessment instrument they developed called the Structured Assessment of Robotic Microsurgical Skills (SARMS) was validated. The instrument combines the previously validated Structured Assessment of Microsurgical Skills (SAMS) with other skill domains in robotic surgery. Interrater reliability for the SARMS instrument was excellent for all skill areas among four expert, blinded evaluators. They then present a process by which the learning curve for robotic-assisted microvascular anastomoses was measured and plotted. Ten study participants performed five robotic microanastomoses each that were recorded, deidentified and scored. Trends in SARMS scores were plotted. All skill areas and overall performance improved significantly for each participant over the five microanastomotic sessions, and operative time decreased for all participants. The results showed an initial steep ascent in technical skill acquisition followed by more gradual improvement, and a steady decrease in operative times for the cohort. Participants at all levels of training, ranging from minimal microsurgical experience to expert microsurgeons gained proficiency over the course of five robotic sessions.
SUBMITTER: Selber JC
PROVIDER: S-EPMC3946019 | biostudies-other | 2014 Feb
REPOSITORIES: biostudies-other
ACCESS DATA