Investigation on the structure and upconversion fluorescence of Yb³⁺/Ho³⁺ co-doped fluorapatite crystals for potential biomedical applications.
Ontology highlight
ABSTRACT: Rare-earth Yb(3+) and Ho(3+) co-doped fluorapatite (FA:Yb(3+)/Ho(3+)) crystals were prepared by hydrothermal synthesis, and their structure, upconversion properties, cell proliferation and imaging were investigated. The synthesized crystals, with a size of 16 by 286 nm, have a hexagonal crystal structure of classic FA and a Ca/Yb/Ho molar ratio of 100/16/2.1. Several reasonable Yb(3+)/Ho(3+) -embedding lattice models along the fluorine channel of the FA crystal cell are proposed for the first time, such as models for (Ca7YbHo©)(PO4)6F2 and (Ca6YbHoNa2)(PO4)6F2. The activated FA:Yb(3+)/Ho(3+) crystals were found to exhibit distinct upconversion fluorescence. The 543- and 654-nm signals in the emission spectra could be assigned, respectively, to the (5)F4 ((5)S2) - (5)I8 and (5)F5 - (5)I8 transitions of holmium via 980-nm near-infrared excitation and the energy transfer of ytterbium. After the surfaces were grafted with hydrophilic dextran, the crystals displayed clear fluorescent cell imaging. Thus, the prepared novel FA:Yb(3+)/Ho(3+) upconversion fluorescent crystals have potential applications in the biomedical field.
SUBMITTER: Li X
PROVIDER: S-EPMC3963035 | biostudies-other | 2014
REPOSITORIES: biostudies-other
ACCESS DATA