Unknown

Dataset Information

0

The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture.


ABSTRACT: STUDY OBJECTIVES: Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3(-/-) mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca(2+) influx into RTN neurons can trigger small-conductance Ca(2+)-activated K(+)-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca(2+) channels in rodent sleep. METHODS: The role of CaV2.3 Ca(2+) channels was analyzed in CaV2.3(-/-) mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. RESULTS: CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3(-/-) mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca(2+) channel expression. The detailed mechanisms of SWS increase in CaV2.3(-/-) mice remain to be determined. CONCLUSIONS: Low-voltage activated CaV2.3 R-type Ca(2+) channels in the thalamocortical loop and extra-thalamocortical circuitries substantially regulate rodent sleep architecture thus representing a novel potential target for pharmacological treatment of sleep disorders in the future.

SUBMITTER: Siwek ME 

PROVIDER: S-EPMC3985108 | biostudies-other | 2014 May

REPOSITORIES: biostudies-other

altmetric image

Publications

The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture.

Siwek Magdalena Elisabeth ME   Müller Ralf R   Henseler Christina C   Broich Karl K   Papazoglou Anna A   Weiergräber Marco M  

Sleep 20140501 5


<h4>Study objectives</h4>Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channel  ...[more]

Similar Datasets

| S-EPMC2266581 | biostudies-literature
| S-EPMC4083433 | biostudies-literature
| S-EPMC5161592 | biostudies-literature
| S-EPMC4003244 | biostudies-literature
| S-EPMC3877713 | biostudies-literature
2022-06-09 | GSE186729 | GEO
| S-EPMC3044366 | biostudies-literature