Unknown

Dataset Information

0

Miswiring the brain: ?9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway.


ABSTRACT: Children exposed in utero to cannabis present permanent neurobehavioral and cognitive impairments. Psychoactive constituents from Cannabis spp., particularly ?(9)-tetrahydrocannabinol (THC), bind to cannabinoid receptors in the fetal brain. However, it is unknown whether THC can trigger a cannabinoid receptor-driven molecular cascade to disrupt neuronal specification. Here, we show that repeated THC exposure disrupts endocannabinoid signaling, particularly the temporal dynamics of CB1 cannabinoid receptor, to rewire the fetal cortical circuitry. By interrogating the THC-sensitive neuronal proteome we identify Superior Cervical Ganglion 10 (SCG10)/stathmin-2, a microtubule-binding protein in axons, as a substrate of altered neuronal connectivity. We find SCG10 mRNA and protein reduced in the hippocampus of midgestational human cannabis-exposed fetuses, defining SCG10 as the first cannabis-driven molecular effector in the developing cerebrum. CB1 cannabinoid receptor activation recruits c-Jun N-terminal kinases to phosphorylate SCG10, promoting its rapid degradation in situ in motile axons and microtubule stabilization. Thus, THC enables ectopic formation of filopodia and alters axon morphology. These data highlight the maintenance of cytoskeletal dynamics as a molecular target for cannabis, whose imbalance can limit the computational power of neuronal circuitries in affected offspring.

SUBMITTER: Tortoriello G 

PROVIDER: S-EPMC4000086 | biostudies-other | 2014 Apr

REPOSITORIES: biostudies-other

altmetric image

Publications

Miswiring the brain: Δ9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway.

Tortoriello Giuseppe G   Morris Claudia V CV   Alpar Alan A   Fuzik Janos J   Shirran Sally L SL   Calvigioni Daniela D   Keimpema Erik E   Botting Catherine H CH   Reinecke Kirstin K   Herdegen Thomas T   Courtney Michael M   Hurd Yasmin L YL   Harkany Tibor T  

The EMBO journal 20140127 7


Children exposed in utero to cannabis present permanent neurobehavioral and cognitive impairments. Psychoactive constituents from Cannabis spp., particularly Δ(9)-tetrahydrocannabinol (THC), bind to cannabinoid receptors in the fetal brain. However, it is unknown whether THC can trigger a cannabinoid receptor-driven molecular cascade to disrupt neuronal specification. Here, we show that repeated THC exposure disrupts endocannabinoid signaling, particularly the temporal dynamics of CB1 cannabinoi  ...[more]

Similar Datasets

| S-EPMC5726525 | biostudies-literature
| S-EPMC33485 | biostudies-literature
| S-EPMC3702552 | biostudies-literature
| S-EPMC5849033 | biostudies-literature
| S-EPMC9233014 | biostudies-literature
| S-EPMC6895202 | biostudies-literature
| S-EPMC2755104 | biostudies-other
| S-EPMC4669480 | biostudies-literature
| S-EPMC5220292 | biostudies-literature
| S-EPMC5066275 | biostudies-literature