Epigenetics in comparative biology: why we should pay attention.
Ontology highlight
ABSTRACT: The past decade has seen an explosion of articles in scientific journals involving non-genetic influences on phenotype through modulation of gene function without changes in gene sequence. The excitement in modern molecular biology surrounding the impact exerted by the environment on development of the phenotype is focused largely on mechanism and has not incorporated questions asked (and answers provided) by early philosophers, biologists, and psychologists. As such, this emergence of epigenetic studies is somewhat "old wine in new bottles" and represents a reformulation of the old debate of preformationism versus epigenesis-one resolved in the 1800s. Indeed, this tendency to always look forward, with minimal concern or regard of what has gone before, has led to the present situation in which "true" epigenetic studies are believed to consist of one of two schools. The first is primarily medically based and views epigenetic mechanisms as pathways for disease (e.g., "the epigenetics of cancer"). The second is primarily from the basic sciences, particularly molecular genetics, and regards epigenetics as a potentially important mechanism for organisms exposed to variable environments across multiple generations. There is, however, a third, and separate, school based on the historical literature and debates and regards epigenetics as more of a perspective than a phenomenon. Against this backdrop, comparative integrative biologists are particularly well-suited to understand epigenetic phenomena as a way for organisms to respond rapidly with modified phenotypes (relative to natural selection) to changes in the environment. Using evolutionary principles, it is also possible to interpret "sunsetting" of modified phenotypes when environmental conditions result in a disappearance of the epigenetic modification of gene regulation. Comparative integrative biologists also recognize epigenetics as a potentially confounding source of variation in their data. Epigenetic modification of phenotype (molecular, cellular, morphological, physiological, and behavioral) can be highly variable depending upon ancestral environmental exposure and can contribute to apparent "random" noise in collected datasets. Thus, future research should go beyond the study of epigenetic mechanisms at the level of the gene and devote additional investigation of epigenetic outcomes at the level of both the individual organism and how it affects the evolution of populations. This review is the first of seven in this special issue of Integrative and Comparative Biology that addresses in detail these and other key topics in the study of epigenetics.
SUBMITTER: Burggren WW
PROVIDER: S-EPMC4133572 | biostudies-other | 2014 Jul
REPOSITORIES: biostudies-other
ACCESS DATA