Effect of pulsatile and continuous flow on yes-associated protein.
Ontology highlight
ABSTRACT: Yes-associated protein (YAP) is a mechanosignaling protein that relays mechanical information to the nucleus by changing its level of phosphorylation. We hypothesize that different flow patterns show differential effect on phosphorylated YAP (pYAP) (S127) and total YAP and could be responsible for flow dependent localization of atherosclerosis. Confluent human umbilical vein endothelial cells (HUVECs) seeded on fibronectin-coated glass slides were exposed to continuous forward flow (CFF) and pulsatile forward flow (PFF) using a parallel plate flow chamber system for 30 minutes. Cell lysates were prepared and immunoblotted to detect the levels of phosphorylated YAP and total YAP. HUVECs exposed to both PFF and CFF showed a mild decrease in the levels of both pYAP (S127) and total YAP. While the levels of pYAP (S127) decreased to 87.85 and 85.21% of static control with PFF and CFF, respectively, the levels of total YAP significantly decreased to 91.31 and 92.27% of static control. No significant difference was seen between CFF and PFF on their effect on pYAP (S127), but both conditions resulted in a significant decrease in total YAP at 30 minutes. The results of this experiment show that the possible effect of different types of flow on YAP is not induced before 30 minutes. Experiments exposing endothelial cells to various types of flow for longer duration of time could help to elucidate the role of YAP in the pathogenesis of atherosclerosis.
SUBMITTER: Chitragari G
PROVIDER: S-EPMC4169103 | biostudies-other | 2014 Sep
REPOSITORIES: biostudies-other
ACCESS DATA