Unknown

Dataset Information

0

Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells.


ABSTRACT: At the onset of neurogenesis in the mammalian central nervous system, neuroepithelial cells switch from symmetric, proliferative to asymmetric, neurogenic divisions. In analogy to the asymmetric division of Drosophila neuroblasts, this switch of mammalian neuroepithelial cells is thought to involve a change in cleavage plane orientation from perpendicular (vertical cleavage) to parallel (horizontal cleavage) relative to the apical surface of the neuroepithelium. Here, we report, using TIS21-GFP knock-in mouse embryos to identify neurogenic neuroepithelial cells, that at the onset as well as advanced stages of neurogenesis the vast majority of neurogenic divisions, like proliferative divisions, show vertical cleavage planes. Remarkably, however, neurogenic divisions of neuroepithelial cells, but not proliferative ones, involve an asymmetric distribution to the daughter cells of the apical plasma membrane, which constitutes only a minute fraction (1-2%) of the entire neuroepithelial cell plasma membrane. Our results support a novel concept for the cell biological basis of asymmetric, neurogenic divisions of neuroepithelial cells in the mammalian central nervous system.

SUBMITTER: Kosodo Y 

PROVIDER: S-EPMC419905 | biostudies-other | 2004 Jun

REPOSITORIES: biostudies-other

altmetric image

Publications

Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells.

Kosodo Yoichi Y   Röper Katja K   Haubensak Wulf W   Marzesco Anne-Marie AM   Corbeil Denis D   Huttner Wieland B WB  

The EMBO journal 20040513 11


At the onset of neurogenesis in the mammalian central nervous system, neuroepithelial cells switch from symmetric, proliferative to asymmetric, neurogenic divisions. In analogy to the asymmetric division of Drosophila neuroblasts, this switch of mammalian neuroepithelial cells is thought to involve a change in cleavage plane orientation from perpendicular (vertical cleavage) to parallel (horizontal cleavage) relative to the apical surface of the neuroepithelium. Here, we report, using TIS21-GFP  ...[more]

Similar Datasets

| S-EPMC1399371 | biostudies-literature
2022-12-30 | GSE167379 | GEO
| S-EPMC3466335 | biostudies-literature
| S-EPMC1502476 | biostudies-literature
| S-EPMC3255984 | biostudies-literature
| S-EPMC6418215 | biostudies-literature
| S-EPMC9114397 | biostudies-literature
| S-EPMC9021227 | biostudies-literature
| S-EPMC5993681 | biostudies-literature
| S-EPMC2781049 | biostudies-literature