High-throughput electrophoretic mobility shift assays for quantitative analysis of molecular binding reactions.
Ontology highlight
ABSTRACT: We describe a platform for high-throughput electrophoretic mobility shift assays (EMSAs) for identification and characterization of molecular binding reactions. A photopatterned free-standing polyacrylamide gel array comprised of 8 mm-scale polyacrylamide gel strips acts as a chassis for 96 concurrent EMSAs. The high-throughput EMSAs was employed to assess binding of the Vc2 cyclic-di-GMP riboswitch to its ligand. In optimizing the riboswitch EMSAs on the free-standing polyacrylamide gel array, three design considerations were made: minimizing sample injection dispersion, mitigating evaporation from the open free-standing polyacrylamide gel structures during electrophoresis, and controlling unit-to-unit variation across the large-format free-standing polyacrylamide gel array. Optimized electrophoretic mobility shift conditions allowed for 10% difference in mobility shift baseline resolution within 3 min. The powerful 96-plex EMSAs increased the throughput to ?10 data/min, notably more efficient than either conventional slab EMSAs (?0.01 data/min) or even microchannel based microfluidic EMSAs (?0.3 data/min). The free-standing polyacrylamide gel EMSAs yielded reliable quantification of molecular binding and associated mobility shifts for a riboswitch-ligand interaction, thus demonstrating a screening assay platform suitable for riboswitches and potentially a wide range of RNA and other macromolecular targets.
SUBMITTER: Pan Y
PROVIDER: S-EPMC4204909 | biostudies-other | 2014 Oct
REPOSITORIES: biostudies-other
ACCESS DATA