Unknown

Dataset Information

0

Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/vascular endothelial growth factor axis by targeting cullin 3.


ABSTRACT: Hypoxia induces expression of various genes and microRNAs (miRs) that regulate angiogenesis and vascular function. In this study, we investigated a new functional role of new hypoxia-responsive miR-101 in angiogenesis and its underlying mechanism for regulating heme oxygenase-1 (HO-1) and vascular endothelial growth factor (VEGF) expression.We found that hypoxia induced miR-101, which binds to the 3'untranslated region of cullin 3 (Cul3) and stabilizes nuclear factor erythroid-derived 2-related factor 2 (Nrf2) via inhibition of the proteasomal degradation pathway. miR-101 overexpression promoted Nrf2 nuclear accumulation, which was accompanied with increases in HO-1 induction, VEGF expression, and endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) production. The elevated NO-induced S-nitrosylation of Kelch-like ECH-associated protein 1 and subsequent induction of Nrf2-dependent HO-1 lead to further elevation of VEGF production via a positive feedback loop between the Nrf2/HO-1 and VEGF/eNOS axes. Moreover, miR-101 promoted angiogenic signals and angiogenesis both in vitro and in vivo, and these events were attenuated by inhibiting the biological activity of HO-1, VEGF, or eNOS. Moreover, these effects were also observed in aortic rings from HO-1(+/-) and eNOS(-/-) mice. Local overexpression of miR-101 improved therapeutic angiogenesis and perfusion recovery in the ischemic mouse hindlimb, whereas antagomiR-101 diminished regional blood flow.Hypoxia-responsive miR-101 stimulates angiogenesis by activating the HO-1/VEGF/eNOS axis via Cul3 targeting. Thus, miR-101 is a novel angiomir.Our results provide new mechanistic insights into a functional role of miR-101 as a potential therapeutic target in angiogenesis and vascular remodeling.

SUBMITTER: Kim JH 

PROVIDER: S-EPMC4245877 | biostudies-other | 2014 Dec

REPOSITORIES: biostudies-other

altmetric image

Publications

Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/vascular endothelial growth factor axis by targeting cullin 3.

Kim Ji-Hee JH   Lee Kwang-Soon KS   Lee Dong-Keon DK   Kim Joohwan J   Kwak Su-Nam SN   Ha Kwon-Soo KS   Choe Jongseon J   Won Moo-Ho MH   Cho Byung-Ryul BR   Jeoung Dooil D   Lee Hansoo H   Kwon Young-Guen YG   Kim Young-Myeong YM  

Antioxidants & redox signaling 20140729 18


<h4>Aims</h4>Hypoxia induces expression of various genes and microRNAs (miRs) that regulate angiogenesis and vascular function. In this study, we investigated a new functional role of new hypoxia-responsive miR-101 in angiogenesis and its underlying mechanism for regulating heme oxygenase-1 (HO-1) and vascular endothelial growth factor (VEGF) expression.<h4>Results</h4>We found that hypoxia induced miR-101, which binds to the 3'untranslated region of cullin 3 (Cul3) and stabilizes nuclear factor  ...[more]

Similar Datasets

| S-EPMC4499644 | biostudies-literature
| S-EPMC4741941 | biostudies-literature
| S-EPMC7387684 | biostudies-literature
| S-EPMC4937390 | biostudies-literature
| S-EPMC5130454 | biostudies-literature
| S-EPMC2843195 | biostudies-literature
| S-EPMC6171216 | biostudies-literature
| S-EPMC3582133 | biostudies-literature
| S-EPMC3644734 | biostudies-literature
| S-EPMC4752414 | biostudies-literature