Electrochemical performance and carbon deposition resistance of M-BaZr₀.₁Ce₀.₇Y₀.₁Yb₀.₁O₃₋δ (M = Pd, Cu, Ni or NiCu) anodes for solid oxide fuel cells.
Ontology highlight
ABSTRACT: Pd-, Cu-, Ni- and NiCu-BaZr₀.₁Ce₀.₇Y₀.₁Yb₀.₁O₃₋δ anodes, designated as M-BZCYYb, were prepared by impregnating M-containing solution into BZCYYb scaffold, and investigated in the aspects of electrocatalytic activity for the reactions of H₂ and CH₄ oxidation and the resistance to carbon deposition. Impregnation of Pd, Ni or NiCu significantly reduced both the ohmic (RΩ) and polarization (RP) losses of BZCYYb anode exposed to H₂ or CH₄, while Cu impregnation decreased only RΩ in H₂ and the both in CH4. Pd-, Ni- and NiCu-BZCYYb anodes were resistant to carbon deposition in wet (3 mol. % H₂O) CH₄ at 750°C. Deposited carbon fibers were observed in Pd- and Ni-BZCYYb anodes exposed to dry CH4 at 750°C for 12 h, and not observed in NiCu-BZCYYb exposed to dry CH₄ at 750°C for 24 h. The performance of a full cell with NiCu-BZCYYb anode, YSZ electrolyte and La₀.₆Sr₀.₄Co₀.₂Fe₀.₈O₃₋δ-Gd doped CeO₂ (LSCF-GDC) cathode was stable at 750°C in wet CH₄ for 130 h, indicating that NiCu-BZCYYb is a promising anode for direct CH₄ solid oxide fuel cells (SOFCs).
SUBMITTER: Li M
PROVIDER: S-EPMC4288223 | biostudies-other | 2015
REPOSITORIES: biostudies-other
ACCESS DATA