An odor detection system based on automatically trained mice by relative go no-go olfactory operant conditioning.
Ontology highlight
ABSTRACT: Odor detection applications are needed by human societies in various circumstances. Rodent offers unique advantages in developing biologic odor detection systems. This report outlines a novel apparatus designed to train maximum 5 mice automatically to detect odors using a new olfactory, relative go no-go, operant conditioning paradigm. The new paradigm offers the chance to measure real-time reliability of individual animal's detection behavior with changing responses. All of 15 water-deprivation mice were able to learn to respond to unpredictable delivering of the target odor with higher touch frequencies via a touch sensor. The mice were continually trained with decreasing concentrations of the target odor (n-butanol), the average correct percent significantly dropped when training at 0.01% solution concentration; the alarm algorithm showed excellent recognition of odor detection behavior of qualified mice group through training. Then, the alarm algorithm was repeatedly tested against simulated scenario for 4 blocks. The mice acted comparable to the training period during the tests, and provided total of 58 warnings for the target odor out of 59 random deliveries and 0 false alarm. The results suggest this odor detection method is promising for further development in respect to various types of odor detection applications.
SUBMITTER: He J
PROVIDER: S-EPMC4421860 | biostudies-other | 2015 May
REPOSITORIES: biostudies-other
ACCESS DATA