Arabidopsis thaliana gamma-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs.
Ontology highlight
ABSTRACT: A mutant of Escherichia coli, JTG10, deficient in gamma-glutamylcysteine synthetase (gamma-ECS; EC 6.3.2.2) is unable to synthesize glutathione (GSH) and is sensitive to 8-hydroxyquinoline. This phenotype was exploited for the isolation of Arabidopsis thaliana gamma-ECS cDNAs by expression cloning, and clones were selected through functional complementation by growth on 8-hydroxyquinoline. High levels of gamma-ECS activity were detectable in extracts derived from cultures of JTG10 expressing the Arabidopsis gamma-ECS open reading frame, although these complemented mutants accumulated GSH to only 10% of the wild-type level. The derived amino acid sequence constitutes a polypeptide of 59.9 kDa and shows only 44-48% similarity with previously published sequences of rat kidney, human liver, yeast, and E. coli gamma-ECS. When the gamma-ECS cDNA was used as a probe, Southern blot analysis of Arabidopsis genomic DNA revealed that it is present as a low copy number gene. Furthermore, the Arabidopsis gamma-ECS cDNA probe failed to hybridize to maize and tobacco genomic DNA at low stringency, suggesting that heterogeneity in gamma-ECS structure exists between plant species. The activity of recombinant Arabidopsis gamma-ECS was inhibited by buthionine sulfoximine and GSH, indicating that, while differences in the primary and secondary structure of gamma-ECS from different sources exist, the enzymes may have similar active site structures.
SUBMITTER: May MJ
PROVIDER: S-EPMC44957 | biostudies-other | 1994 Oct
REPOSITORIES: biostudies-other
ACCESS DATA