Unknown

Dataset Information

0

Physically-based in silico light sheet microscopy for visualizing fluorescent brain models.


ABSTRACT: We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen.We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed, and the results of the fluorescence model were quantitatively validated against the fluorescence brightness equation and characteristic emission spectra of different fluorescent dyes.Modelling and simulation.

SUBMITTER: Abdellah M 

PROVIDER: S-EPMC4547197 | biostudies-other | 2015

REPOSITORIES: biostudies-other

altmetric image

Publications

Physically-based in silico light sheet microscopy for visualizing fluorescent brain models.

Abdellah Marwan M   Bilgili Ahmet A   Eilemann Stefan S   Markram Henry H   Schürmann Felix F  

BMC bioinformatics 20150813


<h4>Background</h4>We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose  ...[more]

Similar Datasets

| S-EPMC7678332 | biostudies-literature
| S-EPMC4569691 | biostudies-literature
| S-EPMC8497830 | biostudies-literature
| S-EPMC4674777 | biostudies-literature
| S-EPMC10151475 | biostudies-literature
| S-EPMC4776137 | biostudies-literature
| S-EPMC6879637 | biostudies-literature
| S-EPMC6018501 | biostudies-literature
| S-EPMC9648671 | biostudies-literature
| S-EPMC9098858 | biostudies-literature