ABSTRACT: This paper considers whether multispecies biofilms are evolutionary individuals. Numerous multispecies biofilms have characteristics associated with individuality, such as internal integrity, division of labor, coordination among parts, and heritable adaptive traits. However, such multispecies biofilms often fail standard reproductive criteria for individuality: they lack reproductive bottlenecks, are comprised of multiple species, do not form unified reproductive lineages, and fail to have a significant division of reproductive labor among their parts. If such biofilms are good candidates for evolutionary individuals, then evolutionary individuality is achieved through other means than frequently cited reproductive processes. The case of multispecies biofilms suggests that standard reproductive requirements placed on individuality should be reconsidered. More generally, the case of multispecies biofilms indicates that accounts of individuality that focus on single-species eukaryotes are too restrictive and that a pluralistic and open-ended account of evolutionary individuality is needed.
Project description:Evolutionary transitions in individuality (hereafter, ETIs), such as the transition to multi-cellularity and the transition to social colonies, have been at the centre of evolutionary research, but only few attempts were made to systematically operationalize this concept. Here, we devise a set of four indicators intended to assess the change in complexity during ETIs: system size, inseparability, reproductive specialization and non-reproductive specialization. We then conduct a quantitative comparison across multiple taxa and ETIs. Our analysis reveals that inseparability has a crucial role in the process; it seems irreversible and may mark the point where a group of individuals becomes a new individual at a higher hierarchical level. Interestingly, we find that disparate groups demonstrate a similar pattern of progression along ETIs.
Project description:The evolution of life on earth has been driven by a small number of major evolutionary transitions. These transitions have been characterized by individuals that could previously replicate independently, cooperating to form a new, more complex life form. For example, archaea and eubacteria formed eukaryotic cells, and cells formed multicellular organisms. However, not all cooperative groups are en route to major transitions. How can we explain why major evolutionary transitions have or haven't taken place on different branches of the tree of life? We break down major transitions into two steps: the formation of a cooperative group and the transformation of that group into an integrated entity. We show how these steps require cooperation, division of labor, communication, mutual dependence, and negligible within-group conflict. We find that certain ecological conditions and the ways in which groups form have played recurrent roles in driving multiple transitions. In contrast, we find that other factors have played relatively minor roles at many key points, such as within-group kin discrimination and mechanisms to actively repress competition. More generally, by identifying the small number of factors that have driven major transitions, we provide a simpler and more unified description of how life on earth has evolved.
Project description:Despite the productivity of basic cancer research, cancer continues to be a health burden to society because this research has not yielded corresponding clinical applications. Many proposed solutions to this dilemma have revolved around implementing organizational and policy changes related to cancer research. Here I argue for a different solution: a new conceptualization of causation in cancer. Neither the standard molecular biomarker approaches nor evolutionary biology approaches to cancer fully capture its complex causal dynamics, even when considered jointly. These approaches map on to Ernst Mayr's proximate-ultimate distinction, which is an inadequate conceptualization of causation in biological systems and makes it difficult to connect developmental and evolutionary viewpoints. I propose looking to evolutionary developmental biology (EvoDevo) to overcome the distinction and integrate the proximate and ultimate causal frameworks. I use the concepts of modularity and evolvability to show how an EvoDevo perspective can be manifested in cancer translational research. This perspective on causation in cancer is better suited for integrating the complexity of current empirical results and can facilitate novel developments in the investigation and clinical treatment of cancer.
Project description:The classic evolutionary theory of aging explains why mortality rises with age: as individuals grow older, less lifetime fertility remains, so continued survival contributes less to reproductive fitness. However, successful reproduction often involves intergenerational transfers as well as fertility. In the formal theory offered here, age-specific selective pressure on mortality depends on a weighted average of remaining fertility (the classic effect) and remaining intergenerational transfers to be made to others. For species at the optimal quantity-investment tradeoff for offspring, only the transfer effect shapes mortality, explaining postreproductive survival and why juvenile mortality declines with age. It also explains the evolution of lower fertility, longer life, and increased investments in offspring.
Project description:Evolutionary transitions in individuality (ETIs) involve the formation of Darwinian collectives from Darwinian particles. The transition from cells to multicellular life is a prime example. During an ETI, collectives become units of selection in their own right. However, the underlying processes are poorly understood. One observation used to identify the completion of an ETI is an increase in collective-level performance accompanied by a decrease in particle-level performance, for example measured by growth rate. This seemingly counterintuitive dynamic has been referred to as fitness decoupling and has been used to interpret both models and experimental data. Extending and unifying results from the literature, we show that fitness of particles and collectives can never decouple because calculations of fitness performed over appropriate and equivalent time intervals are necessarily the same provided the population reaches a stable collective size distribution. By way of solution, we draw attention to the value of mechanistic approaches that emphasise traits, and tradeoffs among traits, as opposed to fitness. This trait-based approach is sufficient to capture dynamics that underpin evolutionary transitions. In addition, drawing upon both experimental and theoretical studies, we show that while early stages of transitions might often involve tradeoffs among particle traits, later-and critical-stages are likely to involve the rupture of such tradeoffs. Thus, when observed in the context of ETIs, tradeoff-breaking events stand as a useful marker of these transitions.
Project description:Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.
Project description:Classification of the human gut microbiome into distinct types, or "enterotypes," provides an attractive framework for understanding microbial variation in health and disease. However, as discussed here, several different methods of collapsing enterotype variation into a few discrete clusters suggest that enterotype distribution is continuous and can vary widely within an individual.
Project description:Phenotypic variability is a hallmark of diseases involving chromosome gains and losses, such as Down syndrome and cancer. Allelic variances have been thought to be the sole cause of this heterogeneity. Here, we systematically examine the consequences of gaining and losing single or multiple chromosomes to show that the aneuploid state causes non-genetic phenotypic variability. Yeast cell populations harboring the same defined aneuploidy exhibit heterogeneity in cell-cycle progression and response to environmental perturbations. Variability increases with degree of aneuploidy and is partly due to gene copy number imbalances, suggesting that subtle changes in gene expression impact the robustness of biological networks and cause alternate behaviors when they occur across many genes. As inbred trisomic mice also exhibit variable phenotypes, we further propose that non-genetic individuality is a universal characteristic of the aneuploid state that may contribute to variability in presentation and treatment responses of diseases caused by aneuploidy.
Project description:Studies of morbidity compression routinely report the average number of years spent in an unhealthy state but do not report variation in age at morbidity onset. Variation was highlighted by Fries (1980) as crucial for identifying disease postponement. Using incidence of first hospitalization after age 60, as one working example, we estimate variation in morbidity onset over a 27-year period in Denmark. Annual estimates of first hospitalization and the population at risk for 1987 to 2014 were identified using population-based registers. Sex-specific life tables were constructed, and the average age, the threshold age, and the coefficient of variation in age at first hospitalization were calculated. On average, first admissions lasting two or more days shifted towards older ages between 1987 and 2014. The average age at hospitalization increased from 67.8 years (95% CI 67.7-67.9) to 69.5 years (95% CI 69.4-69.6) in men, and 69.1 (95% CI 69.1-69.2) to 70.5 years (95% CI 70.4-70.6) in women. Variation in age at first admission increased slightly as the coefficient of variation increased from 9.1 (95% CI 9.0-9.1) to 9.9% (95% CI 9.8-10.0) among men, and from 10.3% (95% CI 10.2-10.4) to 10.6% (95% CI 10.5-10.6) among women. Our results suggest populations are ageing with better health today than in the past, but experience increasing diversity in healthy ageing. Pensions, social care, and health services will have to adapt to increasingly heterogeneous ageing populations, a phenomenon that average measures of morbidity do not capture.
Project description:Resistant hypertension is common and known to be a risk factor for cardiovascular events, including stroke, myocardial infarction, heart failure, and cardiovascular mortality, as well as adverse renal events, including chronic kidney disease and end-stage kidney disease. This review will discuss the definition of resistant hypertension as well as the most recent evidence regarding its diagnosis, evaluation, and management. The issue of medication non-adherence and its association with apparent treatment-resistant hypertension will be addressed. Non-pharmacological interventions for the treatment of resistant hypertension will be reviewed. Particular emphasis will be placed on pharmacological interventions, highlighting the role of mineralocorticoid receptor antagonists and sodium-glucose cotransporter-2 inhibitors and device therapy, including renal denervation, baroreceptor activation or modulation, and central arteriovenous fistula creation.