Effects of Scorpion venom peptide B5 on hematopoietic recovery in irradiated mice and the primary mechanisms.
Ontology highlight
ABSTRACT: Scorpion venom peptide B5 (SVP-B5) stimulates recovery of hematopoiesis after exposure to radiation. However, its radioprotective effects and mechanisms are still unclear. The aim of this study was to investigate the effects of SVP-B5 on hematopoietic recovery in mice after total body irradiation (TBI) at a dose of 7.5 Gy and 6 Gy and to explore the possible primary mechanisms. SVP-B5 at a dose of 2.63 μg/kg significantly reduced the mortality rate of mice after TBI (p < 0.05). It showed markedly protective effects against radiation injury. SVP-B5 also significantly increased the number of bone marrow nucleated cells (BMNCs) and increased the colony forming unit (CFU) number in irradiated mice, accelerated the post-irradiation recovery of peripheral blood leukocytes and platelets in mice. SVP-B5 treatment markedly reduced the Reactive Oxygen Species (ROS) levels in BMNCs after TBI, reduced γH2AX levels, and decreased the relative expression levels of p16 and p21 mRNA at day 14 (d14) after irradiation. Our study indicated that SVP-B5 could partially mitigate radiation-induced DNA damage, enhance the post-radiation hematopoietic recovery, and improve the survival rate probably through the ROS-p16/p21 pathway.
SUBMITTER: Wang C
PROVIDER: S-EPMC4611173 | biostudies-other | 2015
REPOSITORIES: biostudies-other
ACCESS DATA