Unknown

Dataset Information

0

Effects and possible mechanisms of action of acacetin on the behavior and eye morphology of Drosophila models of Alzheimer's disease.


ABSTRACT: The human ?-amyloid (A?) cleaving enzyme (BACE-1) is a target for Alzheimer's disease (AD) treatments. This study was conducted to determine if acacetin extracted from the whole Agastache rugosa plant had anti-BACE-1 and behavioral activities in Drosophila melanogaster AD models and to determine acacetin's mechanism of action. Acacetin (100, 300, and 500??M) rescued amyloid precursor protein (APP)/BACE1-expressing flies and kept them from developing both eye morphology (dark deposits, ommatidial collapse and fusion, and the absence of ommatidial bristles) and behavioral (motor abnormalities) defects. The reverse transcription polymerase chain reaction analysis revealed that acacetin reduced both the human APP and BACE-1 mRNA levels in the transgenic flies, suggesting that it plays an important role in the transcriptional regulation of human BACE-1 and APP. Western blot analysis revealed that acacetin reduced A? production by interfering with BACE-1 activity and APP synthesis, resulting in a decrease in the levels of the APP carboxy-terminal fragments and the APP intracellular domain. Therefore, the protective effect of acacetin on A? production is mediated by transcriptional regulation of BACE-1 and APP, resulting in decreased APP protein expression and BACE-1 activity. Acacetin also inhibited APP synthesis, resulting in a decrease in the number of amyloid plaques.

SUBMITTER: Wang X 

PROVIDER: S-EPMC4632086 | biostudies-other | 2015

REPOSITORIES: biostudies-other

altmetric image

Publications

Effects and possible mechanisms of action of acacetin on the behavior and eye morphology of Drosophila models of Alzheimer's disease.

Wang Xue X   Perumalsamy Haribalan H   Kwon Hyung Wook HW   Na Young-Eun YE   Ahn Young-Joon YJ  

Scientific reports 20151104


The human β-amyloid (Aβ) cleaving enzyme (BACE-1) is a target for Alzheimer's disease (AD) treatments. This study was conducted to determine if acacetin extracted from the whole Agastache rugosa plant had anti-BACE-1 and behavioral activities in Drosophila melanogaster AD models and to determine acacetin's mechanism of action. Acacetin (100, 300, and 500 μM) rescued amyloid precursor protein (APP)/BACE1-expressing flies and kept them from developing both eye morphology (dark deposits, ommatidial  ...[more]

Similar Datasets

| S-EPMC2856915 | biostudies-literature
| S-EPMC6138326 | biostudies-other
| S-EPMC10813760 | biostudies-literature
| S-EPMC10800531 | biostudies-literature
| S-EPMC5471577 | biostudies-literature
| S-EPMC8602845 | biostudies-literature
| S-EPMC9790214 | biostudies-literature
| S-EPMC9813270 | biostudies-literature
| S-EPMC6764737 | biostudies-literature
| S-EPMC6688355 | biostudies-literature