Origami rules for the construction of localized eigenstates of the Hubbard model in decorated lattices.
Ontology highlight
ABSTRACT: We present a method of construction of exact localized many-body eigenstates of the Hubbard model in decorated lattices, both for U = 0 and U → ∞. These states are localized in what concerns both hole and particle movement. The starting point of the method is the construction of a plaquette or a set of plaquettes with a higher symmetry than that of the whole lattice. Using a simple set of rules, the tight-binding localized state in such a plaquette can be divided, folded and unfolded to new plaquette geometries. This set of rules is also valid for the construction of a localized state for one hole in the U → ∞ limit of the same plaquette, assuming a spin configuration which is a uniform linear combination of all possible permutations of the set of spins in the plaquette.
SUBMITTER: Dias RG
PROVIDER: S-EPMC4652234 | biostudies-other | 2015
REPOSITORIES: biostudies-other
ACCESS DATA