Unknown

Dataset Information

0

Synthetic biology devices for in vitro and in vivo diagnostics.


ABSTRACT: There is a growing need to enhance our capabilities in medical and environmental diagnostics. Synthetic biologists have begun to focus their biomolecular engineering approaches toward this goal, offering promising results that could lead to the development of new classes of inexpensive, rapidly deployable diagnostics. Many conventional diagnostics rely on antibody-based platforms that, although exquisitely sensitive, are slow and costly to generate and cannot readily confront rapidly emerging pathogens or be applied to orphan diseases. Synthetic biology, with its rational and short design-to-production cycles, has the potential to overcome many of these limitations. Synthetic biology devices, such as engineered gene circuits, bring new capabilities to molecular diagnostics, expanding the molecular detection palette, creating dynamic sensors, and untethering reactions from laboratory equipment. The field is also beginning to move toward in vivo diagnostics, which could provide near real-time surveillance of multiple pathological conditions. Here, we describe current efforts in synthetic biology, focusing on the translation of promising technologies into pragmatic diagnostic tools and platforms.

SUBMITTER: Slomovic S 

PROVIDER: S-EPMC4664311 | biostudies-other | 2015 Nov

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC6093680 | biostudies-literature
| S-EPMC7897318 | biostudies-literature
| S-EPMC5550429 | biostudies-literature
| S-SCDT-10_1038-S44318-024-00251-W | biostudies-other
| S-EPMC8168367 | biostudies-literature
| S-EPMC9673061 | biostudies-literature
| S-EPMC8830365 | biostudies-literature
2015-05-11 | GSE66756 | GEO
| S-EPMC1948103 | biostudies-other
2015-05-11 | E-GEOD-66756 | biostudies-arrayexpress