Decoding the view expectation during learned maze navigation from human fronto-parietal network.
Ontology highlight
ABSTRACT: Humans use external cues and prior knowledge about the environment to monitor their positions during spatial navigation. View expectation is essential for correlating scene views with a cognitive map. To determine how the brain performs view expectation during spatial navigation, we applied a multiple parallel decoding technique to functional magnetic resonance imaging (fMRI) when human participants performed scene choice tasks in learned maze navigation environments. We decoded participants' view expectation from fMRI signals in parietal and medial prefrontal cortices, whereas activity patterns in occipital cortex represented various types of external cues. The decoder's output reflected participants' expectations even when they were wrong, corresponding to subjective beliefs opposed to objective reality. Thus, view expectation is subjectively represented in human brain, and the fronto-parietal network is involved in integrating external cues and prior knowledge during spatial navigation.
SUBMITTER: Shikauchi Y
PROVIDER: S-EPMC4668559 | biostudies-other | 2015 Dec
REPOSITORIES: biostudies-other
ACCESS DATA