Ventral pallidal coding of a learned taste aversion.
Ontology highlight
ABSTRACT: The hedonic value of a sweet food reward, or how much a taste is 'liked', has been suggested to be encoded by neuronal firing in the posterior ventral pallidum (VP). Hedonic impact can be altered by psychological manipulations, such as taste aversion conditioning, which can make an initially pleasant sweet taste become perceived as disgusting. Pairing nausea-inducing LiCl injection as a Pavlovian unconditioned stimulus (UCS) with a novel taste that is normally palatable as the predictive conditioned stimulus (CS+) suffices to induce a learned taste aversion that changes orofacial 'liking' responses to that sweet taste (e.g., lateral tongue protrusions) to 'disgust' reactions (e.g., gapes) in rats. We used two different sweet tastes of similar initial palatability (a sucrose solution and a polycose/saccharin solution, CS ± assignment was counterbalanced across groups) to produce a discriminative conditioned aversion. Only one of those tastes (arbitrarily assigned and designated as CS+) was associatively paired with LiCl injections as UCS to form a conditioned aversion. The other taste (CS-) was paired with mere vehicle injections to remain relatively palatable as a control sweet taste. We recorded the neural activity in VP in response to each taste, before and after aversion training. We found that the safe and positively hedonic taste always elicited excitatory increases in firing rate of VP neurons. By contrast, aversion learning reversed the VP response to the 'disgusting' CS+ taste from initial excitation into a conditioned decrease in neuronal firing rate after training. Such neuronal coding of hedonic impact by VP circuitry may contribute both to normal pleasure and disgust, and disruptions of VP coding could result in affective disorders, addictions and eating disorders.
SUBMITTER: Itoga CA
PROVIDER: S-EPMC4724492 | biostudies-other | 2016 Mar
REPOSITORIES: biostudies-other
ACCESS DATA