Unknown

Dataset Information

0

Kinetic inductance driven nanoscale 2D and 3D THz transmission lines.


ABSTRACT: We examine the unusual dispersion and attenuation of transverse electromagnetic waves in the few-THz regime on nanoscale graphene and copper transmission lines. Conventionally, such propagation has been considered to be highly dispersive, due to the RC time constant-driven voltage diffusion below 1 THz and plasmonic effects at higher optical frequencies. Our numerical modeling across the microwave, THz, and optical frequency ranges reveals that the conductor kinetic inductance creates an ultra-broadband linear-dispersion and constant-attenuation region in the THz regime. This so-called LC region is an ideal characteristic that is known to be absent in macro-scale transmission lines. The kinetic-LC frequency range is dictated by the structural dimensionality and the free-carrier scattering rate of the conductor material. Moreover, up to 40x wavelength reduction is observed in graphene transmission lines.

SUBMITTER: Mousavi SH 

PROVIDER: S-EPMC4853740 | biostudies-other | 2016 May

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC2755602 | biostudies-literature
2020-09-26 | GSE158597 | GEO
| 2220465 | ecrin-mdr-crc
| S-EPMC7159922 | biostudies-literature
| S-EPMC5159851 | biostudies-other
| S-EPMC6507416 | biostudies-literature
| PRJNA665737 | ENA
2024-03-31 | E-MTAB-13749 | biostudies-arrayexpress
| S-ECPF-TABM-244 | biostudies-other
| S-EPMC6774369 | biostudies-literature