Design, synthesis and biological assessment of novel N-substituted 3-(phthalimidin-2-yl)-2,6-dioxopiperidines and 3-substituted 2,6-dioxopiperidines for TNF-? inhibitory activity.
Ontology highlight
ABSTRACT: Eight novel 2-(2,6-dioxopiperidin-3-yl)phthalimidine EM-12 dithiocarbamates 9 and 10, N-substituted 3-(phthalimidin-2-yl)-2,6-dioxopiperidines 11-14 and 3-substituted 2,6-dioxopiperidines 16 and 18 were synthesized as tumor necrosis factor-? (TNF-?) synthesis inhibitors. Synthesis involved utilization of a novel condensation approach, a one-pot reaction involving addition, iminium rearrangement and elimination, to generate the phthalimidine ring required for the creation of compounds 9-14. Agents were, thereafter, quantitatively assessed for their ability to suppress the synthesis on TNF-? in a lipopolysaccharide (LPS)-challenged mouse macrophage-like cellular screen, utilizing cultured RAW 264.7 cells. Whereas compounds 9, 14 and 16 exhibited potent TNF-? lowering activity, reducing TNF-? by up to 48% at 30 ?M, compounds 12, 17 and 18 presented moderate TNF-? inhibitory action. The TNF-? lowering properties of these analogs proved more potent than that of revlimid (3) and thalidomide (1). In particular, N-dithiophthalimidomethyl-3-(phthalimidin-2-yl)-2,6-dioxopiperidine 14 not only possessed the greatest potency of the analogs to reduce TNF-? synthesis, but achieved this with minor cellular toxicity at 30 ?M. The pharmacological focus of the presented compounds is towards the development of well-tolerated agents to ameliorate the neuroinflammation, that is, commonly associated with neurodegenerative disorders, epitomized by Alzheimer's disease and Parkinson's disease.
SUBMITTER: Luo W
PROVIDER: S-EPMC5187979 | biostudies-other | 2011 Jul
REPOSITORIES: biostudies-other
ACCESS DATA