Korean Scutellaria baicalensis Georgi flavonoid extract induces mitochondrially mediated apoptosis in human gastric cancer AGS cells.
Ontology highlight
ABSTRACT: Korean Scutellaria baicalensis Georgi has been widely used in Korean folk medicines for its range of medicinal benefits, including its anticancer effect. The aim of the present study was to investigate the underlying molecular mechanism of action of a flavonoid extract from Korean Scutellaria baicalensis Georgi (FSB) on AGS human gastric cancer cells (gastric adenocarcinoma) in which FSB exhibits an anticancer effect. Treatment of AGS cells with FSB significantly inhibited cell viability in a concentration-dependent manner. Furthermore, FSB significantly increased the proportion of cells in sub-G1 phase, and Annexin V and Hoechst 33258 fluorescent staining confirmed the apoptotic cell death. Furthermore, western blotting results identified that treatment of AGS cells with FSB significantly downregulated the expression of caspase family members, namely procaspases 3 and 9, and poly(ADP-ribose) polymerase (PARP), and subsequently upregulated cleaved caspase 3 and cleaved PARP. It was observed that FSB treatment significantly decreased the mitochondrial membrane potential of AGS cells. In addition, the ratio of the mitochondrion-associated proteins B cell lymphoma 2-associated X protein and B cell lymphoma extra large was upregulated. The results of the present study provide novel insight into the underlying molecular mechanism of the anticancer effects of FSB on AGS human gastric cancer cells and indicate that FSB may be an alternative chemotherapeutic agent for the treatment of gastric cancer.
Project description:Ganoderma lucidum is one of the most widely studied mushroom species, particularly in what concerns its medicinal properties. Previous studies (including those from some of us) have shown some evidence that the methanolic extract of G. lucidum affects cellular autophagy. However, it was not known if it induces autophagy or decreases the autophagic flux. The treatment of a gastric adenocarcinoma cell line (AGS) with the mushroom extract increased the formation of autophagosomes (vacuoles typical from autophagy). Moreover, the cellular levels of LC3-II were also increased, and the cellular levels of p62 decreased, confirming that the extract affects cellular autophagy. Treating the cells with the extract together with lysossomal protease inhibitors, the cellular levels of LC3-II and p62 increased. The results obtained proved that, in AGS cells, the methanolic extract of G. lucidum causes an induction of autophagy, rather than a reduction in the autophagic flux. To our knowledge, this is the first study proving that statement.
Project description:Helicobacter pylori induces cell death by apoptosis. However, the apoptosis-inducing factor is still unknown. The virulence factor vacuolating cytotoxin A (VacA) is a potential candidate, and thus its role in apoptosis induction was investigated in the human gastric epithelial cell line AGS. The supernatant from the vacA wild-type strain P12 was able to induce apoptotic cell death, whereas the supernatant from its isogenic mutant strain P14 could not. That VacA was indeed the apoptosis-inducing factor was demonstrated further by substantial reduction of apoptosis upon treatment of AGS cells with a supernatant specifically depleted of native VacA. Furthermore, a recombinant VacA produced in Escherichia coli was also able to induce apoptosis in AGS cells but failed to induce cellular vacuolation. These findings demonstrate that the vacuolating cytototoxin of H. pylori is a bacterial factor capable of inducing apoptosis in gastric epithelial cells.
Project description:Gastric cancer is the common type of malignancy positioned at second in mortality rate causing burden worldwide with increasing treatment options. The application of transcriptomics technologies possesses the high efficiency of identifying key metabolic pathways and functional genes in cancer research.Prunetin (PRU) is an O-methylated flavonoid that belongs to the group of isoflavone executing beneficial activities. In the current study, a transcriptome profile on treated and untreated conditions of flavonoid prunetin was performed in order identify the differential expression of genes which eventually aids in preditcing candidate biomarkers.
Project description:Cancer metastasis is directly related to the survival rate of cancer patients. Although cancer metastasis proceeds by the movement of cancer cells, it is fundamentally caused by its resistance to anoikis, a mechanism of apoptosis caused by the loss of adhesion of cancer cells. Therefore, it was found that inhibiting cancer migration and reducing anoikis resistance are important for cancer suppression, and natural compounds can effectively control it. Among them, Ribes fasciculatum, which has been used as a medicinal plant, was confirmed to have anticancer potential, and experiments were conducted to prove various anticancer effects by extracting Ribes fasciculatum (RFE). Through various experiments, it was observed that RFE induces apoptosis of AGS gastric cancer cells, arrests the cell cycle, induces oxidative stress, and reduces mobility. It was also demonstrated that anoikis resistance was attenuated through the downregulation of proteins, such as epidermal growth factor receptor (EGFR). Moreover, the anticancer effect of RFE depends upon the increase in p53 expression, suggesting that RFE is suitable for the development of p53-targeted anticancer materials. Moreover, through xenotransplantation, it was found that the anticancer effect of RFE confirmed in vitro was continued in vivo.
Project description:BackgroundDespite being a promising strategy, current chemotherapy for gastric cancer (GC) is limited due to adverse side effects and poor survival rates. Therefore, new drug-delivery platforms with good biocompatibility are needed. Recent studies have shown that nanoparticle-based drug delivery can be safe, eco-friendly, and nontoxic making them attractive candidates. Here, we develop a novel selenium-nanoparticle based drug-delivery agent for cancer treatment from plant extracts and selenium salts.ResultsSelenium cations were reduced to selenium nanoparticles using Kaempferia parviflora (black ginger) root extract and named KP-SeNP. Transmission electron microscopy, selected area electron diffraction, X-ray diffraction, energy dispersive X-ray, dynamic light scattering, and Fourier-transform infrared spectrum were utilized to confirm the physicochemical features of the nanoparticles. The KP-SeNPs showed significant cytotoxicity in human gastric adenocarcinoma cell (AGS cells) but not in normal cells. We determined that the intracellular signaling pathway mechanisms associated with the anticancer effects of KP-SeNPs involve the upregulation of intrinsic apoptotic signaling markers, such as B-cell lymphoma 2, Bcl-associated X protein, and caspase 3 in AGS cells. KP-SeNPs also caused autophagy of AGS by increasing the autophagic flux-marker protein, LC3B-II, whilst inhibiting autophagic cargo protein, p62. Additionally, phosphorylation of PI3K/Akt/mTOR pathway markers and downstream targets was decreased in KP-SeNP-treated AGS cells. AGS-cell xenograft model results further validated our in vitro findings, showing that KP-SeNPs are biologically safe and exert anticancer effects via autophagy and apoptosis.ConclusionsThese results show that KP-SeNPs treatment of AGS cells induces apoptosis and autophagic cell death through the PI3K/Akt/mTOR pathway, suppressing GC progression. Thus, our research strongly suggests that KP-SeNPs could act as a novel potential therapeutic agent for GC.
Project description:Gastric cancer (GC) is one of the leading causes of cancer mortality in the world, and finding novel agents for the treatment of advanced gastric cancer is of urgent need. Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. Although EF24 demonstrates potent anticancer effïcacy in numerous types of human cancer cells, the cellular targets of EF24 have not been fully deï¬?ned. We report here that EF24 may interact with the thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, to induce reactive oxygen species (ROS)-mediated apoptosis in human gastric cancer cells. By inhibiting TrxR1 activity and increasing intracellular ROS levels, EF24 induces a lethal endoplasmic reticulum stress in human gastric cancer cells. Importantly, knockdown of TrxR1 sensitizes cells to EF24 treatment. In vivo, EF24 treatment markedly reduces the TrxR1 activity and tumor cell burden, and displays synergistic lethality with 5-FU against gastric cancer cells. Targeting TrxR1 with EF24 thus discloses a previously unrecognized mechanism underlying the biological activity of EF24, and reveals that TrxR1 is a good target for gastric cancer therapy.
Project description:Background: Oxidative stress from elevated reactive oxygen species (ROS) has been reported to induce cell apoptosis and may provide a means to target cancer cells. Celastrol is a natural bioactive compound that was recently shown to increase ROS levels and cause apoptosis in cancer cells. However, the underlying mechanism for this cytotoxic action remains unclear and direct molecular targets of Celastrol have not been identified. Methods: Proteome microarray, surface plasmon resonance, isothermal titration calorimetry and molecular simulation were used to identify the molecular target of Celastrol. Binding and activity assays were used to validate the interaction of Celastrol with target protein in cell-free and gastric cancer cell lysates. We then assessed target transcript levels in in biopsy specimens obtained from patients with gastric cancer. Gastric cancer growth-limiting and cytotoxic activity of Celastrol was evaluated in BALB/c nu/nu mice. Results: Our data show that Celastrol directly binds to an antioxidant enzyme, peroxiredoxin-2 (Prdx2), which then inhibits its enzyme activity at both molecular and cellular level. Inhibition of Prdx2 by Celastrol increased cellular ROS levels and led to ROS-dependent endoplasmic reticulum stress, mitochondrial dysfunction, and apoptosis in gastric cancer cells. Functional tests demonstrated that Celastrol limits gastric cancer cells, at least in part, through targeting Prdx2. Celastrol treatment of mice implanted with gastric cancer cells also inhibited tumor growth, associated with Prdx2 inhibition and increased ROS. Analysis of human gastric cancer also showed increased Prdx2 levels and correlation with survival. Conclusion: Our studies have uncovered a potential Celastrol-interacting protein Prdx2 and a ROS-dependent mechanism of its action. The findings also highlight Prdx2 as a potential target for the treatment of gastric cancer.
Project description:Gastric cancer (GC) is a common gastrointestinal malignancy, and cisplatin (DDP) is an important component of chemotherapeutic regimens for GC. However, the application of DDP is limited by its dose?dependent systemic toxicity. Resveratrol (RES) is a natural polyphenol compound that has chemopreventive and therapeutic effects against various cancers, including GC. However, whether RES can sensitize GC cells to DDP remains unknown. Following RES/DDP combination treatment, cell viability was determined by Cell Counting Kit?8 and colony?forming assays, and cell apoptosis and the cell cycle were detected by FITC?Annexin V/PI staining assay and PI staining assay, respectively, followed by flow cytometry. Moreover, western blotting was performed to evaluate the protein expression levels, and the intracellular free Ca2+ concentration was determined by a Fluo?4 AM probe after cell cotreatment with RES and DDP. The present results demonstrated that RES/DDP combination treatment significantly inhibited cell viability, promoted cell apoptosis and induced G2/M phase arrest in AGS cells. In addition, it was determined that RES combined with DDP significantly increased the levels of Bax, cleaved poly?ADP?ribose polymerase (PARP), glucose?regulated protein 78 (GRP78), PRKR?like ER kinase (PERK), p?eukaryotic translation initiation factor 2? (p?eIF2?), CCAAT/enhancer binding protein homologous protein (CHOP) and cleaved caspase?12, whereas Bcl?2 expression was downregulated following RES/DDP cotreatment. Moreover, RES/DDP cotreatment significantly upregulated phosphorylated cyclin?dependent kinase 1 (p?CDK1, Tyr15), p21Waf1/Cip1 and p27Kip1 protein levels and downregulated Cdc25C protein levels. In conclusion, RES and DDP synergistically inhibited the growth of the gastric adenocarcinoma cell line AGS by inducing endoplasmic reticulum stress?mediated apoptosis and G2/M phase arrest via activation of the PERK/eIF2?/activating transcription factor 4 (ATF4)/CHOP signaling pathway and caspase?12 and by inactivating the CDK1?cyclin B1 complex. These results indicated that RES is a promising adjuvant for DDP during GC chemotherapy.
Project description:We investigated the antitumor activity and action mechanism of MHY440 in AGS human gastric cancer cells. MHY440 inhibited topoisomerase (Topo) Ι activity and was associated with a DNA damage response signaling pathway. It exhibited a stronger anti-proliferative effect on AGS cells relative to Hs27 human foreskin fibroblast cells, and this effect was both time- and concentration-dependent. MHY440 also increased cell arrest in the G2/M phase by decreasing cyclin B1, Cdc2, and Cdc25c, and upregulating p53 and p73. MHY440 induced AGS cell apoptosis through the upregulation of Fas-L, Fas, and Bax as well as the proteolysis of BH3 interacting-domain death agonist and poly(ADP-ribose) polymerase. It also contributed to the loss of mitochondrial membrane potential. The apoptotic cell death induced by MHY440 was inhibited by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor, indicating that apoptosis was caspase-dependent. Moreover, the apoptotic effect of MHY440 was reactive oxygen species (ROS)-dependent, as evidenced by the inhibition of MHY440-induced PARP cleavage and ROS generation via N-acetylcysteine-induced ROS scavenging. Taken together, MHY440 showed anticancer effects by inhibiting Topo I, regulating the cell cycle, inducing apoptosis through caspase activation, and generating ROS, suggesting that MHY440 has considerable potential as a therapeutic agent for human gastric cancer.
Project description:The prognosis of gastric cancer remains poor due to clinical drug resistance. Novel drugs are urgently needed. Shikonin (SHK), a natural naphthoquinone, has been reported to trigger cell death and overcome drug resistance in anti-tumour therapy. In this study, we investigated the effectiveness and molecular mechanisms of SHK in treatment with gastric cancer. In vitro, SHK suppresses proliferation and triggers cell death of gastric cancer cells but leads minor damage to gastric epithelial cells. SHK induces the generation of intracellular reactive oxygen species (ROS), depolarizes the mitochondrial membrane potential (MMP) and ultimately triggers mitochondria-mediated apoptosis. We confirmed that SHK induces apoptosis of gastric cancer cells not only in a caspase-dependent manner which releases Cytochrome C and triggers the caspase cascade, but also in a caspase-independent manner which mediates the nuclear translocation of apoptosis-inducing factor and Endonuclease G. Furthermore, we demonstrated that SHK enhanced the chemotherapeutic sensitivity of 5-fluorouracil and oxaliplatin in vitro and in vivo. Taken together, our data show that SHK may be a novel therapeutic agent in the clinical treatment of gastric cancer.