Unknown

Dataset Information

0

Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials.


ABSTRACT: Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.

SUBMITTER: Lang L 

PROVIDER: S-EPMC5503082 | biostudies-other | 2016 May

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC5972540 | biostudies-literature
| S-EPMC8428713 | biostudies-literature
| S-EPMC3063611 | biostudies-other
| S-EPMC5695715 | biostudies-other
| S-EPMC5125272 | biostudies-literature
| S-EPMC7594165 | biostudies-literature
| S-EPMC7115023 | biostudies-literature
| S-EPMC1304047 | biostudies-literature
| S-EPMC6894594 | biostudies-literature
| S-EPMC5554264 | biostudies-literature