The role of bone marrow-derived endothelial progenitor cells and angiogenic responses in chronic obstructive pulmonary disease.
Ontology highlight
ABSTRACT: Increased vascularity of the bronchial sub-mucosa is a cardinal feature of chronic obstructive pulmonary disease (COPD) and is associated with disease severity. Capillary engorgement, leakage, and vasodilatation can directly increase airway wall thickness resulting in airway luminal narrowing and facilitate inflammatory cell trafficking, thereby contributing to irreversible airflow obstruction, a characteristic of COPD. Airway wall neovascularisation, seen as increases in both the size and number of bronchial blood vessels is a prominent feature of COPD that correlates with reticular basement membrane thickening and airway obstruction. Sub-epithelial vascularization may be an important remodelling event for airway narrowing and airflow obstruction in COPD. Post-natal angiogenesis is a complex process, whereby new blood vessels sprouting from extant microvasculature, can arise from the proliferation of resident mature vascular endothelial cells (ECs). In addition, this may arise from increased turnover and lung-homing of circulating endothelial progenitor cells (EPCs) from the bone marrow (BM). Following lung-homing, EPCs can differentiate locally within the tissue into ECs, further contributing to vascular repair, maintenance, and expansion under pathological conditions, governed by a locally elaborated milieu of growth factors (GFs). In this article, we will review evidence for the role of BM-derived EPCs in the development of angiogenesis in the lug and discuss how this may relate to the pathogenesis of COPD.
SUBMITTER: Salter B
PROVIDER: S-EPMC5543009 | biostudies-other | 2017 Jul
REPOSITORIES: biostudies-other
ACCESS DATA