The combination of CRP isoforms with oxLDL decreases TNF-α and IL-6 release by U937-derived macrophages.
Ontology highlight
ABSTRACT: C-reactive protein (CRP) and oxidized low density lipoprotein (oxLDL) serve major roles at both early and advanced stages of atherosclerosis. CRP exists in two isoforms, monomeric (m) and pentameric (p), that bring about pro- or anti-inflammatory effects in macrophages. In addition, CRP may form a complex with oxidized low-density lipoprotein (oxLDL) via phosphatidylcholine, thus decreasing its pro-inflammatory effects within macrophages. The aim of the present study was to investigate the single and the combined effects of mCRP, pCRP and oxLDL on U937-derived macrophages. In the current study, U937-derived macrophages were treated in vitro with different combinations of CRP isoforms with or without oxLDL. The levels of major inflammatory cytokines [interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor (TNF)-α] along with the production of reactive oxygen species (ROS) were determined. TNF-α and IL-6 levels were significantly decreased (P<0.05) by the effect of mCRP and pCRP combined with oxLDL. No significant changes were observed in IL-1β, IL-8 or ROS levels.
SUBMITTER: Krayem I
PROVIDER: S-EPMC5543421 | biostudies-other | 2017 Sep
REPOSITORIES: biostudies-other
ACCESS DATA