Wound-healing Activity of Zanthoxylum bungeanum Maxim Seed Oil on Experimentally Burned Rats.
Ontology highlight
ABSTRACT: The seed oil of Zanthoxylum bungeanum Maxim (ZBSO) is considered to be rich source of fatty acids, mainly oleic and linoleic acids, and has been used for the treatment of burns in Chinese medicine.We evaluated the healing efficacy of ZBSO and explored its possible mechanism on scalded rats.Sprague-Dawley rat models with deep second-degree burns were set up, and ZBSO (500 and 1000 μl/wound) was topically applied twice daily for 7 days and then once daily until wound healing. The therapeutic effects of ZBSO were evaluated by observing wound closure time, decrustation time, wound-healing ratio, and pathological changes. Collagen type-III, matrix metalloproteinase-2 (MMP-2), MMP-9, phospho-nuclear factor-κB (p-NF-κB) p65, inhibitor of NF-κB subunit α p-IκBα, and inhibitor of NF-κB subunit α (IκBα) expression were determined using Western blotting.The ZBSO-treated group showed a higher wound-healing ratio and shorter decrustation and wound closure times than the untreated group. The topical application of ZBSO increased collagen synthesis as evidenced by an increase in hydroxyproline level and upregulated expression of collagen type-III on days 7, 14, and 21 posttreatment. A reduction in MMP-2 and MMP-9 expressions also confirmed the collagen formation efficacy of ZBSO. Furthermore, there was a significant increase in superoxide dismutase levels and a decrease in malondialdehyde levels in ZBSO-treated wounds. ZBSO also decreased tumor necrosis factor alpha, interleukin-1 (IL-1) β, and IL-6 levels in serum, upregulated IκBα, and downregulated p-NF-κB p65 and p-IκBα expression in vivo, indicating the anti-inflammatory action of ZBSO.ZBSO has significant potential to treat burn wounds by accelerating collagen synthesis and the anti-inflammatory cascade of the healing process.The seed oil of Zanthoxylum bungeanum Maxim (ZBSO) is rich of fatty acidsThe healing efficacy of ZBSO on experimentally scalded rats was evaluatedZBSO has significant potential to treat deep second-degree burn woundsZBSO could accelerate collagen synthesis and inhibit the inflammatory signaling. Abbreviations used: ECL: Enhanced chemiluminescence; ECM: Extracellular matrix; ELISA: Enzyme-linked immunosorbent assay; GC-MS: Gas chromatography-mass spectrometry; HRP: Horseradish peroxidase; HYP: Hydroxyproline; IκBα: Inhibitor of NF-κB subunit α; IL: Interleukin; MDA: Malondialdehyde; MMP: Matrix metalloproteinase-2; NF-κB: Nuclear factor-κB; SFE: Supercritical fluid extraction; SOD: Superoxide dismutase; SSD: Silver sulfadiazine; TCM: Traditional Chinese medicine; TNF: Tumor necrosis factor.
Project description:Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. It is an endemic tree known as "aceitillo", and the antibacterial and antifungal activity of its essential oil has been verified; it also acts as an anti-inflammatory. All of these reported biological activities make the essential oil of B. morelensis a candidate to accelerate the wound-healing process. The objective was to determine the wound-healing properties of B. morelensis' essential oil on a murine model. The essential oil was obtained by hydro-distillation, and the chemical analysis was performed by gas chromatography-mass spectrometry (GC-MS). In the murine model, wound-healing efficacy (WHE) and wound contraction (WC) were evaluated. Cytotoxic activity was evaluated in vitro using peritoneal macrophages from BALB/c mice. The results showed that 18 terpenoid-type compounds were identified in the essential oil. The essential oil had remarkable WHE regardless of the dose and accelerated WC and was not cytotoxic. In vitro tests with fibroblasts showed that cell viability was dose-dependent; by adding 1 mg/mL of essential oil (EO) to the culture medium, cell viability decreased below 80%, while, at doses of 0.1 and 0.01 mg/mL, it remained around 90%; thus, EO did not intervene in fibroblast proliferation, but it did influence fibroblast migration when wound-like was done in monolayer cultures. The results of this study demonstrated that the essential oil was a pro-wound-healing agent because it had good healing effectiveness with scars with good tensile strength and accelerated repair. The probable mechanism of action of the EO of B. morelensis, during the healing process, is the promotion of the migration of fibroblasts to the site of the wound, making them active in the production of collagen and promoting the remodeling of this collagen.
Project description:Advertisements targeted at the elderly population suggest that antioxidant therapy will reduce free radicals and promote wound healing, yet few scientific studies substantiate these claims. To better understand the potential utility of supplemental antioxidant therapy for wound healing, we tested the hypothesis that age and tissue ischemia alter the balance of endogenous antioxidant enzymes. Using a bipedicled skin flap model, ischemic and non-ischemic wounds were created on young and aged rats. Wound closure and the balance of the critical antioxidants superoxide dismutase and glutathione in the wound bed were determined. Ischemia delayed wound closure significantly more in aged rats. Lower superoxide dismutase 2 and glutathione in non-ischemic wounds of aged rats indicate a basal deficit due to age alone. Ischemic wounds from aged rats had lower superoxide dismutase 2 protein and activity initially, coupled with decreased ratios of reduced/oxidized glutathione and lower glutathione peroxidase activity. De novo glutathione synthesis, to restore redox balance in aged ischemic wounds, was initiated as evidenced by increased glutamate cysteine ligase. Results demonstrate deficiencies in two antioxidant pathways in aged rats that become exaggerated in ischemic tissue, culminating in profoundly impaired wound healing and prolonged inflammation.
Project description:BackgroundQuercus infectoria G. Olivier (Fagaceae) nutgalls have been widely employed in traditional Asian medicine for several treatments, especially wounds and skin disorders. However, the effects of this plant on wound healing have not yet been clearly elucidated. This present work was focused on utilization of Quercus infectoria (Qi) as a topical agent for chronic wound treatment.MethodsTwenty Qi formulations (QiFs) were pharmaceutically formulated and antibacterial activity of all formulations was performed. The best formulation based on an antibacterial activity was selected for evaluation of wound healing property. Total phenolics, total flavonoids, and an anti-oxidant activity of the selected formulation were also investigated. Wound healing activity was assessed in streptozotocin-induced diabetic rats and control rats. Streptozotocin injection (50 mg/kg) was found to induce marked hyperglycaemia, compared with citrate-injected controls. Two wounds were created on the upper back of each animal. QiF was topically applied three days after wounding to one of the duplicate wounds on each animal and physiological saline (control) was applied to the other. All wounds were cleaned once a day until wound closure.ResultsQiF10, which exhibited antibacterial and anti-oxidant activities, had the ability to enhance the wound healing process in diabetic rats with abundant cellular infiltration, collagen deposition, and re-epithelialization when compared with the control.DiscussionThis study suggested that QiF10 could be a novel alternative treatment for diabetic wounds.
Project description:BackgroundWe recently reported the clinical safety profile of RJX, a well-defined intravenous GMP-grade pharmaceutical formulation of anti-oxidant and anti-inflammatory vitamins as active ingredients, in a Phase 1 study in healthy volunteers (ClinicalTrials.gov Identifier: NCT03680105) (Uckun et al., Front. Pharmacol. 11, 594321. 10.3389/fphar.2020.594321). The primary objective of the present study was to examine the effects of GMP-grade RJX on wound and burn injury healing in diabetic rats.MethodsIn the present study, a rat model of T2DM was used that employs HFD in combination with a single injection of STZ intraperitoneally (i.p) at a moderate dose level (45 mg/kg). Anesthetized diabetic rats underwent full-thickness skin excision on the back or were subjected to burn injury via a heated brass probe and then started on treatments with normal saline (NS = vehicle) or RJX administered via intraperitoneal injections for three weeks.FindingsNotably, diabetic rats treated with the 1.25 mL/kg or 2.5 mL/kg RJX (DM+RJX groups) rapidly healed their wounds as fast as non-diabetic control rats. Inflammatory cell infiltration in the dermis along with fibrin and cell debris on the epithelial layer persisted for up to 14 days in the DM+NS group but not in RJX-treated groups. The histopathological score of wound healing on days 7 and 14 was better in diabetic rats treated with RJX than diabetic rats treated with NS and comparable to the scores for non-diabetic healthy rats consistent with an accelerated healing process. The residual wound area of RJX-treated rats was significantly smaller than that of NS-treated diabetic rats at each evaluation time point (P<0.001). The accelerating effect of RJX on diabetic wound healing was dose-dependent. We obtained similar results in the burn injury model. Our results demonstrate that RJX - at a dose level >10-fold lower than its clinical maximum tolerated dose (MTD) - accelerates the healing of excision wounds as well burn injury in diabetic rats.
Project description:Plants of Euphorbiaceae are used in folkloric medicines in variety of ailments and well known for chemical diversity of their isoprenoid constituents. This study was carried out to explore the preliminary wound healing potential of four Euphorbia species (E. consorbina 1, E. consorbina 2, E. inarticulata, E. balsamifera and E. schimperi).Excision wound surface of the animals were topically treated with ethyl acetate and methanol extracts of plants at a dose of 400 mg/kg body weight for twenty days. Povidone-iodine ointment was used as a reference drug. Wound contraction measurement and period of epithelialization were used to assess the effect of plants extracts on wound repairing.The groups treated with methanol extracts of E. balsamifera and E. schimperi showed profound effects, high rate of wound contraction (100%) and decrease in epithelization period 19.00±0.40 and 18.50±0.64 respectively, followed by methanol extracts of E. consorbina 2, ethyl acetate extract of E. inarticulata and ethyl acetate extracts of E. consorbina 2 which showed significant (P <0.001) wound contraction and decrease in epithelization period. Conversely ethyl acetate extract of E. consorbina 1, E. balsamifera and E. schimperi and methanol extract of E. Consorbina 1 and E. Inarticulata treated groups was not showing significant wound healing. Methanol extracts of E. balsamifera and E. schimperi were also tested for their safety margin and found safe up to dose of 2000mg/kg body weight.Topical application of methanol extracts of E. balsamifera and E. schimperi have potential wound healing activity which is identical with standard drug Povidone-iodine.
Project description:Ischemia is one of the main epidemic factors and characteristics of diabetic chronic wounds, and exerts a profound effect on wound healing. To explore the mechanism of and the cure for diabetic impaired wound healing, we established a type 2 diabetic rat model. We used an 8 weeks high fat diet (HFD) feeding regimen followed by multiple injections of streptozotocin (STZ) at a dose of 10mg/kg to induce Wister rat to develop type 2 diabetes. Metabolic characteristics were assessed at the 5th week after the STZ injections to confirm the establishment of diabetes mellitus on the rodent model. A bipedicle flap, with length to width ratio 1.5, was performed on the back of the rat to make the flap area ischemic. Closure of excisional wounds on this bipedicle flap and related physiological and pathological changes were studied using histological, immunohistochemical, real time PCR and protein immunoblot approaches. Our results demonstrated that a combination of HFD feeding and a low dose of STZ is capable of inducing the rats to develop type 2 diabetes with noticeable insulin resistance, persistent hyperglycemia, moderate degree of insulinemia, as well as high serum cholesterol and high triglyceride levels. The excision wounds on the ischemic double pedicle flap showed deteriorative healing features comparing with non-ischemic diabetic wounds, including: delayed healing, exorbitant wound inflammatory response, excessive and prolonged ROS production and excessive production of MMPs. Our study suggested that HFD feeding combined with STZ injection could induce type 2 diabetes in rat. Our ischemic diabetic wound model is suitable for the investigation of human diabetic related wound repair; especically for diabetic chronic wounds.
Project description:The effect of Amaranthus cruentus L. seed oil (AmO) on collagen biosynthesis and wound healing was studied in cultured human dermal fibroblasts exposed to UVA radiation. It was found that UVA radiation inhibited collagen biosynthesis, prolidase activity, and expression of the β1-integrin receptor, and phosphorylated ERK1/2 and TGF-β, while increasing the expression of p38 kinase. The AmO at 0.05-0.15% counteracted the above effects induced by UVA radiation in fibroblasts. UVA radiation also induced the expression and nuclear translocation of the pro-inflammatory NF-κB factor and enhanced the COX-2 expression. AmO effectively suppressed the expression of these pro-inflammatory factors induced by UVA radiation. Expressions of β1 integrin and IGF-I receptors were decreased in the fibroblasts exposed to UVA radiation, while AmO counteracted the effects. Furthermore, AmO stimulated the fibroblast's migration in a wound healing model, thus facilitating the repair process following exposure of fibroblasts to UVA radiation. These data suggest the potential of AmO to counteract UVA-induced skin damage.
Project description:Background and aimIn vitro activity evaluation of Egyptian Olea europaea leaves extracts, and in vivo healing activity assessment of the newly prepared ointment of Olea europaea leaves extracts mingled with Shea butter.Experimental procedureDifferent extraction methods and solvents were used to extract Egyptian Olea europaea bioactive agent(s). Antibacterial, scavenging activity and in-vivo evaluation of wound repair potentiality of Olea europaea extract were examined in normal and diabetic experimental rat models with induced circular excisions.Results and conclusionOlive leaves extract of Tanta was selected as the most active agent against Methicillin-resistant S. aureus (MRSA), with MIC value 15.6 μg/ml. Moreover, checkerboard dilution technique approved that the interaction between Tanta LEM crude extract and Ciprofloxacin was synergistic. Scavenging activity of the extract against DPPH free radicals was 87.55% at concentration of 50 μg/ml. In vivo normal and diabetic experimental rats treated with Shea butter: Tanta LEM extract (1:3 w/v) showed the maximum wound contraction and healing activity.
Project description:The aim of this study was to identify the genes differentially expressed between timepoints in the week following tympanic membrane perforation in rats. Tissue from 240 individual rats was used in this study following random allocation into timepoint groups to be sacrificed over 7 days. An Agilent one color microarray technique was performed and the results were analyzed using Genespring GX9 software. A total of 3262 genes were identified as significant (p<0.05) and differentially expressed above a two-fold threshold between the timepoints. This study provides a complete genetic review of rat tympanic membrane wound healing over 7 days. The results can be used as a model for other wound healing in other mammals and in different parts of the body. The information on differential gene expression can be used in research towards developing chronic tympanic membrane perforations and also in research to treat acute and chronic tympanic membrane perforations. The microarray was performed on animals in a disease free environment and the genetic information can be compared to future research in disease states of the TM including Otitis media, cholesteatoma, chronic perforation and tympanosclerosis. Rats were randomly selected as either controls or in the perforation group. Perforations were created unilaterally (left ear) in the upper outer quadrant of the pars tensa of ratsâ tympanic membranes using sterile 23 gauge needles . Rats were then randomly allocated into timepoint groups to be sacrificed at either 12, 24, 36, day 2, 3, 4, 5, 6, 7. At the point of microarray, there were 18 rats per timepoint group and 18 controls.
Project description:Phosphorylated chitosan (PC), a water-soluble derivative of chitosan possesses several biological and chemical properties suitable for diabetic wound healing. In the present study, we report the synthesis and diabetic wound healing capabilities of PC. Elemental analysis, FT-IR, 13C-NMR and 31P-NMR techniques were employed for the chemical characterization of PC. In vitro, antioxidant properties of PC were determined in terms of Fe3+ reducing, metal chelating, lipid peroxidation and superoxide scavenging ability. The wound healing potential of PC was assessed in diabetic excisional wound rat model. PC exhibited good water solubility, and in vitro antioxidant capacity. Wound contraction was higher in PC-treated wounds (91.11%) as compared to untreated wounds (67.26%) on 14th-day post wound creation. Histopathology of PC-treated wounds revealed improved tissue morphology with higher number of fibroblasts, a thicker epithelial layer, enhanced collagen deposits and angiogenesis as compared to untreated wounds. An overall increase of 57% and 25% in hydroxylamine and hexosamine content respectively were noted as compared to untreated wounds. A significant (P ≤ 0.05) increase in SOD activity and a significant (P ≤ 0.05) decrease in lipid peroxides were recorded in PC-treated wounds as compared to untreated wounds. These observations demonstrated that PC can be used as an effective agent in diabetic wound healing. Illustration of phosphorylated chitosan (PC) synthesis and its wound healing potential: Chitosan was phosphorylated to impart diabetic wound healing properties. Chemical characterizations such as elemental analysis, FT-IR and NMR confirmed successful phosphorylation of chitosan. PC exhibited good in vitro antioxidant properties. To assess the diabetic wound healing potential, an excisional wound model was developed in diabetic rats. PC treatment demonstrated accelerated wound healing.